Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water

Original Paper


A novel microextraction method is introduced based on dispersive liquid–liquid microextraction (DLLME) in which an in situ metathesis reaction forms a water-immiscible ionic liquid (IL) that preconcentrates aromatic compounds from water followed by separation using high-performance liquid chromatography. The simultaneous extraction and metathesis reaction forming the IL-based extraction phase greatly decreases the extraction time as well as provides higher enrichment factors compared to traditional IL DLLME and direct immersion single-drop microextraction methods. The effects of various experimental parameters including type of extraction solvent, extraction and centrifugation times, volume of the sample solution, extraction IL and exchanging reagent, and addition of organic solvent and salt were investigated and optimized for the extraction of 13 aromatic compounds. The limits of detection for seven polycyclic aromatic hydrocarbons varied from 0.02 to 0.3 µg L−1. The method reproducibility produced relative standard deviation values ranging from 3.7% to 6.9%. Four real water samples including tap water, well water, creek water, and river water were analyzed and yielded recoveries ranging from 84% to 115%.


A method is introduced based on ionic liquid dispersive liquid–liquid microextraction (IL DLLME) in which an in-situ metathesis reaction forms a water immiscible ionic liquid that pre-concentrates aromatic compounds from water followed by separation using high performance liquid chromatography.


Ionic liquid Dispersive liquid–liquid microextraction High-performance liquid chromatography Metathesis reaction Aromatic compounds Water sampling Polycyclic aromatic hydrocarbons 

Supplementary material

216_2009_3078_MOESM1_ESM.pdf (267 kb)
ESM 1(PDF 267 kb)


  1. 1.
    Mitra S (2003) Sample preparation techniques in analytical chemistry. Wiley-IEEE, New YorkCrossRefGoogle Scholar
  2. 2.
    Pena-Pereira F, Lavilla I, Bendicho C (2009) Spectrochim Acta Part B 64:1–15CrossRefGoogle Scholar
  3. 3.
    Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley, New YorkGoogle Scholar
  4. 4.
    Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Anal Bioanal Chem 393:781–795CrossRefGoogle Scholar
  5. 5.
    Liu S, Dasgupta PK (1995) Anal Chem 67:2042–2049CrossRefGoogle Scholar
  6. 6.
    Genfa Z, Dasgupta PK (2000) Anal Chem 72:3165–3170CrossRefGoogle Scholar
  7. 7.
    Jeannot MA, Cantwell FF (1996) Anal Chem 68:2236–2240CrossRefGoogle Scholar
  8. 8.
    He Y, Lee HK (1997) Anal Chem 69:4634–4640CrossRefGoogle Scholar
  9. 9.
    Pedersen-Bjergaard S, Rasmussen KE (1999) Anal Chem 71:2650–2656CrossRefGoogle Scholar
  10. 10.
    Rasmussen KE, Pedersen-Bjergaard S (2004) Trends Anal Chem 23:1–10CrossRefGoogle Scholar
  11. 11.
    Hinze WL, Pramauro EA (1993) Crit Rev Anal Chem 24:133–177CrossRefGoogle Scholar
  12. 12.
    Frankewlch RP, Hinze WL (1994) Anal Chem 66:944–954CrossRefGoogle Scholar
  13. 13.
    Almeida Bezerra M, Arruda MAZ, Ferreira SLC (2005) Appl Spectrosc Rev 40:269–299CrossRefGoogle Scholar
  14. 14.
    Paleologos EK, Giokas DL, Karayannis MI (2005) Trend Anal Chem 24:426–436CrossRefGoogle Scholar
  15. 15.
    Dallali N, Zahedi MM, Yamimi Y, Agrawal YK (2009) Rev Anal Chem 28:125–136Google Scholar
  16. 16.
    Carabias-Martínez R, Rodríguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón JL, García-Pinto C, Fernández Laespada E (2000) J Chromatogr A 902:251–265CrossRefGoogle Scholar
  17. 17.
    Tohru S, Hinze WL (1995) Talanta 42:119–127CrossRefGoogle Scholar
  18. 18.
    Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogra A 1116:1–9CrossRefGoogle Scholar
  19. 19.
    Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) J Chromatogra A 1123:1–9CrossRefGoogle Scholar
  20. 20.
    Farina L, Boido E, Carrau F, Dellacassa E (2007) J Chromatogra A 1157:46–50CrossRefGoogle Scholar
  21. 21.
    Chiang JS, Huang SD (2008) Talanta 75:70–75CrossRefGoogle Scholar
  22. 22.
    Zhao EC, Zhao WT, Han LJ, Jiang SR, Zhou ZQ (2007) J Chromatogra A 1175:137–140CrossRefGoogle Scholar
  23. 23.
    Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT (2003) Anal Chem 75:5870–5876CrossRefGoogle Scholar
  24. 24.
    Yao C, Pitner W, Anderson JL (2009) Anal Chem 81:5054–5063CrossRefGoogle Scholar
  25. 25.
    Liu JF, Li N, Jiang GB, Liu JM, Jönsson J, Wen MJ (2005) J Chromatogr A 1066:27–32CrossRefGoogle Scholar
  26. 26.
    Zhao F, Meng Y, Anderson JL (2008) J Chromatogr A 1208:1–9CrossRefGoogle Scholar
  27. 27.
    Zhou Q, Bai H, Xie G, Xiao J (2008) J Chromatogr A 1177:43–49CrossRefGoogle Scholar
  28. 28.
    Zhou Q, Bai H, Xie G, Xiao J (2008) J Chromatogr A 1188:148–153CrossRefGoogle Scholar
  29. 29.
    Mallah MH, Shemirani F, Maragheh MG (2009) Environ Sci Technol 43:1947–1951CrossRefGoogle Scholar
  30. 30.
    Zhou Q, Zhang X, Xiao J (2009) J Chromatogr A 1216:4361–4365CrossRefGoogle Scholar
  31. 31.
    Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) J Chromatogr A 1216:885–891CrossRefGoogle Scholar
  32. 32.
    Anderson JL, Ding J, Welton T, Armstrong DW (2002) J Am Chem Soc 124:14247–14254CrossRefGoogle Scholar
  33. 33.
    Lord H, Pawliszyn J (2000) J Chromatogr A 902:167–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of ChemistryThe University of ToledoToledoUSA

Personalised recommendations