Analytical and Bioanalytical Chemistry

, Volume 395, Issue 4, pp 1097–1105 | Cite as

UV cross-linking of unmodified DNA on glass surfaces

  • Thomas Schüler
  • Alla Nykytenko
  • Andrea Csaki
  • Robert Möller
  • Wolfgang Fritzsche
  • Jürgen Popp
Original Paper


The performance of DNA microarrays strongly depends on their surface properties. Furthermore, the immobilization method of the capture molecules is of importance for the efficiency of the microarray in terms of sensitivity and specificity. This work describes the immobilization of single-stranded capture oligonucleotides by UV cross-linking on silanated (amino and epoxy) glass surfaces. Thereby we used amino (NH2) and poly thymine/poly cytosine modifications of the capture sequences as well as unmodified capture molecules. The results were compared to UV cross-linking of the same DNA oligonucleotides on unmodified glass surfaces. Immobilization and hybridization efficiency was demonstrated by fluorescence and enzyme-induced deposition of silver nanoparticles. We found out that single-stranded DNA molecules do not require a special modification to immobilize them by UV cross-linking on epoxy- or amino-modified glass surfaces. However, higher binding rates can be achieved when using amino-modified oligonucleotides on an epoxy surface. The limit of detection for the used settings was 5 pM.


DNA microarray Enzyme-induced silver deposition UV cross-linking Silanated glass surfaces 



Funding of research project “Jenaer Biochip Initiative” (JBCI) within the framework “Unternehmen Region—Inno Profile” from the Federal Ministry of Education and Research, Germany (BMBF) is gratefully acknowledged. This work was supported by the DFG (FR 1348/5-2).We thank Nanoprobes for the kind support with EnzMet® enhancement kit.


  1. 1.
    Oh SJ, Hong BJ, Choi KY, Park JW (2006) Omics 10:327–343CrossRefGoogle Scholar
  2. 2.
    Bier FF, Kleinjung F (2001) Fresenius' J Anal Chem 371:151–156CrossRefGoogle Scholar
  3. 3.
    Rogers YH, Jiang-Baucom P, Huang ZJ, Bogdanov V, Anderson S, Boyce-Jacino MT (1999) Anal Biochem 266:23–30CrossRefGoogle Scholar
  4. 4.
    Oh SJ, Cho SJ, Kim CO (2002) Langmuir 18:1764–1769CrossRefGoogle Scholar
  5. 5.
    Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW (1996) Proc Natl Acad Sci U S A 93:10614–10619CrossRefGoogle Scholar
  6. 6.
    Lamture JB, Beattie KL, Burke BE, Eggers MD, Ehrlich DJ, Fowler R, Hollis MA, Kosicki BB, Reich RK, Smith SR, Varma RS, Hogan ME (1994) Nucleic Acids Res 22:2121–2125CrossRefGoogle Scholar
  7. 7.
    Chrisey LA, Lee GU, O'Ferrall CE (1996) Nucleic Acids Res 24:3031–3039CrossRefGoogle Scholar
  8. 8.
    Zammatteo N, Jeanmart L, Hamels S, Courtois S, Louette P, Hevesi L, Remacle J (2000) Anal Biochem 280:143–150CrossRefGoogle Scholar
  9. 9.
    Taylor S, Smith S, Windle B, Guiseppi-Elie A (2003) Nucleic Acids Res 31:e87CrossRefGoogle Scholar
  10. 10.
    Chiu SK, Hsu M, Ku WC, Tu CY, Tseng YT, Lau WK, Yan RY, Ma JT, Tzeng CM (2003) Biochem J 374:625–632CrossRefGoogle Scholar
  11. 11.
    Schena M (2003) Microarray analysis. Wiley, HobokenGoogle Scholar
  12. 12.
    Boa Z, Ma WL, Hu ZY, Rong S, Shi YB, Zheng WL (2002) J Biochem Mol Biol 35:532–535Google Scholar
  13. 13.
    Duroux M, Gurevich L, Neves-Petersen MT, Skovsen E, Duroux L, Petersen BS (2007) Applied Surface Science 254:1126–1130CrossRefGoogle Scholar
  14. 14.
    Kabilov MR, Pyshnyi DV, Dymshits GM, Gashnikova NM, Pokrovskii AG, Zarytova VF, Ivanova EM (2002) Mol Biol 36:424–431CrossRefGoogle Scholar
  15. 15.
    Kimura N (2006) Biochem Biophys Res Commun 347:477–484CrossRefGoogle Scholar
  16. 16.
    Nahar P, Naqvi A, Basirb SF (2004) Anal Biochem 327:162–164CrossRefGoogle Scholar
  17. 17.
    Soper SA, Hashimoto M, Situma C, Murphy MC, McCarley RL, Cheng YW, Barany F (2005) Methods 37:103–113CrossRefGoogle Scholar
  18. 18.
    Pack PS, Kamisetty KN, Nonogawa M, Devarayapalli CK, Ohtani K, Yamada K, Yoshida Y, Kodaki T, Makino K (2007) Nucleic Acids Res 35:1–10CrossRefGoogle Scholar
  19. 19.
    Dufva M, Petersen J, Stoltenborg M, Birgens H, Christensen CB (2006) Anal Biochem 352:188–197CrossRefGoogle Scholar
  20. 20.
    Sinha RP, Häder DP (2002) Photochem Photobiol Sci 1:225–236CrossRefGoogle Scholar
  21. 21.
    Gudnason H, Dufva M, Duong BD, Wolff A (2008) Biotechniques 45:261–271CrossRefGoogle Scholar
  22. 22.
    Fritzsche W, Taton TA (2003) Nanotechnology 14:R63–R73CrossRefGoogle Scholar
  23. 23.
    Schüler T, Steinbrück A, Festag G, Möller R, Fritzsche W (2008) J Nanopart Res 11:939–946CrossRefGoogle Scholar
  24. 24.
    Möller R, Csaki A, Köhler JM, Fritzsche W (2000) Nucleic Acids Res 28:1–5CrossRefGoogle Scholar
  25. 25.
    Barrett S (2008) Image SXM v1.85.∼sdb/ImageSXM/.
  26. 26.
    Zhuravlev LT (1987) Langmuir 3:316–318CrossRefGoogle Scholar
  27. 27.
    Reichert J (2003) Thesis, Friedrich Schiller Universität JenaGoogle Scholar
  28. 28.
    Piehler J, Brecht A, Geckeler KE, Gauglitz G (1996) Biosens Bioelectron 11:579–590CrossRefGoogle Scholar
  29. 29.
    Piehler J, Brecht A, Gauglitz G, Zerlin M, Maul C, Thiericke R, Grabley S (1997) Anal Biochem 249:94–102CrossRefGoogle Scholar
  30. 30.
    Schüler T, Asmus T, Fritzsche W, Möller R (2009) Biosens Bioelectron 24:2077–2084CrossRefGoogle Scholar
  31. 31.
    Ibanez AJ, Schüler T, Möller R, Fritzsche W, Saluz HP, Svatos A (2008) Anal Chem 80:5892–5898CrossRefGoogle Scholar
  32. 32.
    Festag G, Steinbrück A, Csaki A, Fritzsche W (2007) Nanotechnology 17:1–10Google Scholar
  33. 33.
    Möller R, Powell RD, Hainfeld JF, Fritzsche W (2005) Nano Lett 5:1475–1482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Thomas Schüler
    • 1
  • Alla Nykytenko
    • 2
  • Andrea Csaki
    • 2
  • Robert Möller
    • 1
  • Wolfgang Fritzsche
    • 2
  • Jürgen Popp
    • 1
    • 2
  1. 1.Jenaer Biochip Initiative, Institute of Physical ChemistryFriedrich Schiller UniversityJenaGermany
  2. 2.Institute of Photonic TechnologyJenaGermany

Personalised recommendations