Advertisement

Analytical and Bioanalytical Chemistry

, Volume 395, Issue 3, pp 719–727 | Cite as

Large scale biomimetic membrane arrays

  • Jesper S. Hansen
  • Mark Perry
  • Jörg Vogel
  • Jesper S. Groth
  • Thomas Vissing
  • Marianne S. Larsen
  • Oliver Geschke
  • Jenny Emneús
  • Henrik Bohr
  • Claus H. NielsenEmail author
Original Paper

Abstract

To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical–electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro-structured 8 × 8 aperture partition arrays with average aperture diameters of 301 ± 5 μm. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 × 24 and hexagonal 24 × 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays.

Figure

Fluorescent image of a large 24 × 24 rectangular bilayer array

Keywords

Black lipid membrane Array Optical–electrical measurements Membrane-spanning peptides Membrane protein 

Abbreviations

α-HL

α-Hemolysin

BLM

Black lipid membrane

DPhPC

1,2-Diphytanoyl-sn-Glycero-3-Phosphocholine

ETFE

Ethylene tetrafluoroethylene

FomA

Fusobacterium nucleatum outer membrane protein A

gA

Gramicidin A

LDAO

N-lauryl-N,N-dimethylammonium-N-oxide

NBD-PC

1-Oleoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-sn-glycero-3-phosphocholine

TEA

Tetraethylammonium

Notes

Acknowledgments

We thank Dr. Jörg H. Kleinschmidt (Universität Konstanz, Germany) for the delivery and guidance with the handling and incorporation of FomA porins. The work was supported through MEMBAQ, a Specific Targeted Research Project (STREP), by the European Commission under the Sixth Framework Program (NMP4-CT-2006-033234), by The Danish National Advanced Technology Foundation (023-2007-1), and The Danish National Research Foundation.

References

  1. 1.
    Suzuki H, Takeuchi S (2008) Anal Bioanal Chem 391:2695–2702CrossRefGoogle Scholar
  2. 2.
    Fang Y, Frutos AG, Lahiri J (2002) J Am Chem Soc 124:2394–2395CrossRefGoogle Scholar
  3. 3.
    Fang Y, Hong Y, Webb B et al (2006) MRS bulletin 31:5Google Scholar
  4. 4.
    Fang Y, Lahiri J, Picard L (2003) Drug Discov Today 8:755–761CrossRefGoogle Scholar
  5. 5.
    Kaczorowski GJ, McManus OB, Priest BT et al (2008) J Gen Physiol 131:399–405CrossRefGoogle Scholar
  6. 6.
    Lundbaek JA (2008) J Gen Physiol 131:421–429CrossRefGoogle Scholar
  7. 7.
    Vogel J, Perry M, Hansen JS et al (2009) J Micromech Microeng 19:025026CrossRefGoogle Scholar
  8. 8.
    Hansen JS, Perry M, Vogel J et al (2009) J Micromech Microeng 19:025014CrossRefGoogle Scholar
  9. 9.
    Mueller P, Rudin DO (1969) Curr Topics Bioenergetics 3:157–249Google Scholar
  10. 10.
    Inagaki N, Narushima K, Lim SK, Park YW, Ikeda Y (2002) Journal of Polymer Science Part B: Polymer Physics 40:2871–2882CrossRefGoogle Scholar
  11. 11.
    Y. W. Park N I (2004) Journal of Applied Polymer Science 93:1012-1020Google Scholar
  12. 12.
    Hemmler R, Bose G, Wagner R et al (2005) Biophys J 88:4000–4007CrossRefGoogle Scholar
  13. 13.
    Wilburn JP, Wright DW, Cliffel DE (2006) Analyst 131:311–316CrossRefGoogle Scholar
  14. 14.
    Pocanschi CL, Apell HJ, Puntervoll P et al (2006) J Mol Biol 355:548–561CrossRefGoogle Scholar
  15. 15.
    Benz R, Frohlich O, Lauger P et al (1975) Biochim Biophys Acta 394:323–334CrossRefGoogle Scholar
  16. 16.
    Stark G, Benz R, Pohl GW et al (1972) Biochim Biophys Acta 266:603–612CrossRefGoogle Scholar
  17. 17.
    Mayer M, Kriebel JK, Tosteson MT et al (2003) Biophys J 85:2684–2695CrossRefGoogle Scholar
  18. 18.
    Andersen OS, Koeppe RE 2nd (2007) Annu Rev Biophys Biomol Struct 36:107–130CrossRefGoogle Scholar
  19. 19.
    Mobashery N, Nielsen C, Andersen OS (1997) FEBS Lett 412:15–20CrossRefGoogle Scholar
  20. 20.
    Kleivdal H, Benz R, Jensen HB (1995) Eur J Biochem 233:310–316CrossRefGoogle Scholar
  21. 21.
    Baaken G, Sondermann M, Schlemmer C et al (2008) Lab Chip 8:938–944CrossRefGoogle Scholar
  22. 22.
    Lin Z, Takahashi Y, Kitagawa Y et al (2008) Anal Chem 80:6830–6833CrossRefGoogle Scholar
  23. 23.
    Hebert TE, Gales C, Rebois RV (2006) Cell Biochem Biophys 45:85–109CrossRefGoogle Scholar
  24. 24.
    Lohse MJ, Bunemann M, Hoffmann C et al (2007) Curr Opin Pharmacol 7:547–553CrossRefGoogle Scholar
  25. 25.
    Jeon TJ, Malmstadt N, Schmidt JJ (2006) J Am Chem Soc 128:42–43CrossRefGoogle Scholar
  26. 26.
    Kang XF, Cheley S, Rice-Ficht AC et al (2007) J Am Chem Soc 129:4701–4705CrossRefGoogle Scholar
  27. 27.
    Malmstadt N, Jeon J, Schmidt J (2008) Advanced Materials 20:84–89CrossRefGoogle Scholar
  28. 28.
    Oliver AE, Kendall EL, Howland MC et al (2008) Lab Chip 8:892–897CrossRefGoogle Scholar
  29. 29.
    Uto M, Araki M, Taniguchi T et al (1994) Analytical Sciences 10:943–946CrossRefGoogle Scholar
  30. 30.
    Frant MS, Ross JW Jr (1970) Science 167:987–988CrossRefGoogle Scholar
  31. 31.
    Schar-Zammaretti P, Ziegler U, Forster I et al (2002) Anal Chem 74:4269–4274CrossRefGoogle Scholar
  32. 32.
    Capone R, Blake S, Restrepo MR et al (2007) J Am Chem Soc 129:9737–9745CrossRefGoogle Scholar
  33. 33.
    Borisenko V, Zhang Z, Woolley GA (2002) Biochim Biophys Acta 1558:26–33CrossRefGoogle Scholar
  34. 34.
    Nikolelis DP, Siontorou CG (1996) Anal Chem 68:1735–1741CrossRefGoogle Scholar
  35. 35.
    Braha O, Gu LQ, Zhou L et al (2000) Nat Biotechnol 18:1005–1007CrossRefGoogle Scholar
  36. 36.
    Gu LQ, Braha O, Conlan S et al (1999) Nature 398:686–690CrossRefGoogle Scholar
  37. 37.
    Ashkenasy N, Sanchez-Quesada J, Bayley H et al (2005) Angew Chem Int Ed Engl 44:1401–1404CrossRefGoogle Scholar
  38. 38.
    Kasianowicz JJ, Brandin E, Branton D et al (1996) Proc Natl Acad Sci U S A 93:13770–13773CrossRefGoogle Scholar
  39. 39.
    Kasianowicz JJ, Henrickson SE, Weetall HH et al (2001) Anal Chem 73:2268–2272CrossRefGoogle Scholar
  40. 40.
    Vercoutere WA, Winters-Hilt S, DeGuzman VS et al (2003) Nucleic Acids Res 31:1311–1318CrossRefGoogle Scholar
  41. 41.
    Winters-Hilt S, Vercoutere W, DeGuzman VS et al (2003) Biophys J 84:967–976CrossRefGoogle Scholar
  42. 42.
    Bolstad AI, Jensen HB, Bakken V (1996) Clin Microbiol Rev 9:55–71Google Scholar
  43. 43.
    Jensen HB, Skeidsvoll J, Fjellbirkeland A et al (1996) Microb Pathog 21:331–342CrossRefGoogle Scholar
  44. 44.
    Guo M, Han YW, Sharma A et al (2000) Oral Microbiol Immunol 15:119–123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jesper S. Hansen
    • 1
    • 2
  • Mark Perry
    • 2
  • Jörg Vogel
    • 1
    • 2
  • Jesper S. Groth
    • 2
  • Thomas Vissing
    • 2
  • Marianne S. Larsen
    • 2
  • Oliver Geschke
    • 1
  • Jenny Emneús
    • 1
  • Henrik Bohr
    • 3
  • Claus H. Nielsen
    • 2
    • 3
    Email author
  1. 1.DTU NanotechTechnical University of DenmarkLyngbyDenmark
  2. 2.Aquaporin A/S, Scion DTULyngbyDenmark
  3. 3.DTU Physics, Quantum Protein CenterTechnical University of Denmark2800LyngbyDenmark

Personalised recommendations