Advertisement

Fluorescent polyacrylamide nanoparticles for naproxen recognition

  • Alejandro Lapresta-Fernández
  • Piotr J. Cywinski
  • Artur J. Moro
  • Gerhard J. Mohr
Original Paper

Abstract

We present the synthesis of fluorescent acrylamide nanoparticles (FANs) capable of recognizing non-steroidal anti-inflammatory drugs (NSAIDs) in buffered aqueous solutions. Within this important group, we selected naproxen, one of the 2-arylpropionic acids (profens), due to its use for the treatment of moderate pain, fever, and inflammation. The nanosensors were prepared under mild conditions of inverse microemulsion polymerization using aqueous acrylamide as the monomer and N,N′-methylenebisacrylamide as the cross-linker, employing the surfactants polyoxyethylene-4-lauryl ether (Brij®30) and sodium bis(2-ethylhexyl)sulfosuccinate in hexane. Furthermore, a fluorescent monomer, (E)-4-[4-(dimethylamino)styryl]-1-[4-(methacryloyloxymethyl)benzyl]pyridinium chloride (mDMASP) has been synthesized and incorporated into the nanoparticles. The nanosensors exhibit a broad absorbance at around 460 nm and a structureless fluorescence band with maximum at 590 nm in 0.5 M phosphate buffer (pH = 7.2). The recognition process is performed on the basis of ionic interactions which are monitored by the fluorescence increase at 590 nm upon addition of different concentrations of naproxen. The FANs show a size distribution in the range of 20–80 nm, with a hydrodynamic diameter of 34 nm. In order to assess the selectivity of the FANs, a systematic study was conducted on the effect produced by drugs and biomolecules that could interfere with the analysis of naproxen.

Keywords

Acrylamide nanoparticles Naproxen determination Fluorescent nanosensors Inverse microemulsion polymerization 

Notes

Acknowledgments

We acknowledge financial support from the EU Transfer of Knowledge project “Sensor Nanoparticles for Ions and Biomolecules”, SNIB (MTKD-CT-2005-029554) and the EU Research Training Network “Nanomaterials for Application in Sensors, Catalysis and Emerging Technologies”, NASCENT (MRTN-CT-2006-033873), and from the project MO 1062/6-1 of Deutsche Forschungsgemeinschaft.

References

  1. 1.
    Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C (2006) BMJ 332:1302–1308CrossRefGoogle Scholar
  2. 2.
    Chen YL, Wu SM (2005) Analytical and Bioanalytical Chemistry 381:907–912CrossRefGoogle Scholar
  3. 3.
    Gros M, Petrovic M, Barceló D (2006) Analytical and Bioanalytical Chemistry 386:941–952CrossRefGoogle Scholar
  4. 4.
    Suenami K, Lim L, Takeuchi T, Sasajima Y, Sato K, Takekoshi Y, Kanno S (2006) Analytical and Bioanalytical Chemistry 384:1501–1505CrossRefGoogle Scholar
  5. 5.
    Kot-Wasik A, Debska J, Wasik A, Namiesnik J (2006) Chromatographia 64:13–21CrossRefGoogle Scholar
  6. 6.
    Galliard-Grigioni KS, Fehr M, Reinhart WH (2008) Eur. J. Pharmacol 595:65–68CrossRefGoogle Scholar
  7. 7.
    Valcárcel M, Simonet B, Cárdenas S (2008) Analytical and Bioanalytical Chemistry 391:1881–1887CrossRefGoogle Scholar
  8. 8.
    Nath N, Chilkoti A (2002) Analytical Chemistry 74:504–509CrossRefGoogle Scholar
  9. 9.
    Guo M, Yan Y, Zhang H, Yan H, Cao Y, Liu K, Wan S, Huang J, Yue W (2008) J. Mater. Chem 18:5104–5112CrossRefGoogle Scholar
  10. 10.
    Graefe A, Stanca SE, Nietzsche S, Kubicova L, Beckert R, Biskup C, Mohr GJ (2008) Analytical Chemistry 80:6526–6531CrossRefGoogle Scholar
  11. 11.
    Ruedas-Rama MJ, Hall EAH (2008) The Analyst 133:1556–1566CrossRefGoogle Scholar
  12. 12.
    Mohr GJ (2008) Standarization and quality assurance in fluorescence measurements I. Springer, BerlinGoogle Scholar
  13. 13.
    Hornig S, Biskup C, Grafe A, Wotschadlo J, Liebert T, Mohr GJ, Heinze T (2008) Soft Matter 4:1169–1172CrossRefGoogle Scholar
  14. 14.
    Costa-Fernández J (2006) Analytical and Bioanalytical Chemistry 384:37–40CrossRefGoogle Scholar
  15. 15.
    Cywinski PJ, Moro AJ, Stanca SE, Biskup C, Mohr GJ (2009) Sens. actuators, B, Chem 135:472–477CrossRefGoogle Scholar
  16. 16.
    Landfester RM (2002) Advanced Materials 14:651–655CrossRefGoogle Scholar
  17. 17.
    Liu Z, Xiao H, Wiseman N, Zheng A (2003) Colloid Polym. Sci 281:815–822CrossRefGoogle Scholar
  18. 18.
    Lieberzeit P, Afzal A, Glanzing G, Dickert F (2007) Analytical and Bioanalytical Chemistry 389:441–446CrossRefGoogle Scholar
  19. 19.
    Schulz A, Hornig S, Liebert T, Birckner E, Heinze T, Mohr GJ (2008) Organic. & Biomolecular Chemistry 7:1884–1889CrossRefGoogle Scholar
  20. 20.
    Sun J, Zhuang J, Guan S, Yang W (2008) J. Nanopart. Res 10:653–658CrossRefGoogle Scholar
  21. 21.
    Peng J, He X, Wang K, Tan W, Wang Y, Liu Y (2007) Analytical and Bioanalytical Chemistry 388:645–654CrossRefGoogle Scholar
  22. 22.
    Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009) Biomaterials 30:859–866CrossRefGoogle Scholar
  23. 23.
    Ishizu K, Park J, Tanimura K, Uchida S, Tamura T (2004) J. Mater. Sci. 39:4353–4357CrossRefGoogle Scholar
  24. 24.
    Du Y, Qiao Y, Zou C, Dai J, Yang P (2007) Colloid Polym. Sci 285:553–556CrossRefGoogle Scholar
  25. 25.
    Chiu HK, Chiang IC, Chen DH (2007) J Nanopart ResGoogle Scholar
  26. 26.
    Allard E, Larpent C (2008) J. Polym. Sci., A, Polym. Chem. 46:6206–6213CrossRefGoogle Scholar
  27. 27.
    Doussineau T, Smaïhi M, Mohr GJ (2009) Adv. Funct. Mater 19:117–122CrossRefGoogle Scholar
  28. 28.
    Abramson S, Srithammavanh L, Siaugue JM, Horner O, Xu X, Cabuil V (2009) J Nanopart Res 11:459–465CrossRefGoogle Scholar
  29. 29.
    Nagao D, Yokoyama M, Saeki S, Kobayashi Y, Konno M (2008) Colloid Polym. Sci 286:959–964CrossRefGoogle Scholar
  30. 30.
    Chen ZG, Tang DY (2007) Bioprocess Biosyst. Eng 30:243–249CrossRefGoogle Scholar
  31. 31.
    Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Nanotechnology 17:2783–2788CrossRefGoogle Scholar
  32. 32.
    Pankhurst Q (2006) BT Technol. J. 24:33–38CrossRefGoogle Scholar
  33. 33.
    Gao H, Zhao Y, Fu S, Li B, Li M (2002) Colloid Polym. Sci 280:653–660CrossRefGoogle Scholar
  34. 34.
    Mohr GJ (2006) Optical chemical sensors. Springer, NetherlandsGoogle Scholar
  35. 35.
    Wandelt B, Turkewitsch P, Wysocki S, Darling GD (2002) Polymer 43:2777–2785CrossRefGoogle Scholar
  36. 36.
    Turkewitsch P, Wandelt B, Darling GD, Powell WS (1998) J. Photochem. Photobiol., A Chem 117:199–207CrossRefGoogle Scholar
  37. 37.
    Turkewitsch P, Wandelt B, Ganju RR, Darling GD, Powell WS (1996) Chem Phys Lett 260:142–146CrossRefGoogle Scholar
  38. 38.
    Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Analytical Chemistry 71:4831–4836CrossRefGoogle Scholar
  39. 39.
    Wandelt B, Mielniczak A, Turkewitsch P, Wysocki S (2003) J Lumin 102–103:774–781CrossRefGoogle Scholar
  40. 40.
    Hoshino Y, Kodama T, Okahata Y, Shea KJ (2008) J. Am. Chem. Soc 130:15242–15243CrossRefGoogle Scholar
  41. 41.
    Heuer WB, Lee HS, Kim O-K (1998) Chemical Communications 2649-2650.Google Scholar
  42. 42.
    Analytical Chemistry Division (1995) Pure Appl. Chem 67:1669Google Scholar
  43. 43.
    Capitán-Vallvey LF, Fernández-Ramos MD, Lapresta-Fernández A, Brunet E, Rodríguez-Ubis JC, Juanes O (2006) Talanta 68:1663–1670CrossRefGoogle Scholar
  44. 44.
    Palma A, Lapresta-Fernández A, Ortigosa-Moreno J, Fernández-Ramos M, Carvajal M, Capitán-Vallvey L (2006) Analytical and Bioanalytical Chemistry 386:1215–1224CrossRefGoogle Scholar
  45. 45.
    Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA (2003) Aquatic Sciences - Research Across Boundaries 65:342–351Google Scholar
  46. 46.
    Langford KH, Thomas KV (2009) Environ. Int. 35:766–770CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alejandro Lapresta-Fernández
    • 1
  • Piotr J. Cywinski
    • 1
    • 2
  • Artur J. Moro
    • 1
  • Gerhard J. Mohr
    • 1
  1. 1.Institute of Physical ChemistryFriedrich-Schiller-University JenaJenaGermany
  2. 2.Physical Chemistry, Institute of ChemistryUniversity of PotsdamPotsdamGermany

Personalised recommendations