Analytical and Bioanalytical Chemistry

, Volume 395, Issue 3, pp 747–757 | Cite as

Magnetic track array for efficient bead capture in microchannels

  • Mélanie Abonnenc
  • Anne-Laure Gassner
  • Jacques Morandini
  • Jacques Josserand
  • Hubert H. Girault
Original Paper

Abstract

Magnetism-based microsystems, as those dedicated to immunoaffinity separations or (bio)chemical reactions, take benefit of the large surface area-to-volume ratio provided by the immobilized magnetic beads, thus increasing the sensitivity of the analysis. As the sensitivity is directly linked to the efficiency of the magnetic bead capture, this paper presents a simple method to enhance the capture in a microchannel. Considering a microchannel surrounded by two rectangular permanent magnets of different length (Lm = 2, 5, 10 mm) placed in attraction, it is shown that the amount of trapped beads is limited by the magnetic forces mainly located at the magnet edges. To overcome this limitation, a polyethylene terephthalate (PET) microchip with an integrated magnetic track array has been prototyped by laser photo-ablation. The magnetic force is therefore distributed all along the magnet length. It results in a multi-plug bead capture, observed by microscope imaging, with a magnetic force value locally enhanced. The relative amount of beads, and so the specific binding surface for further immunoassays, presents a significant increase of 300% for the largest magnets. The influence of the track geometry and relative permeability on the magnetic force was studied by numerical simulations, for the microchip operating with 2-mm-long magnets.

Keywords

Microfluidics Magnetism Permanent magnet Magnetic bead Ink Magnetic track array Photo-ablation Polymer Numerical simulation 

Supplementary material

216_2009_3006_MOESM1_ESM.pdf (76 kb)
ESM 1(PDF 76.1 kb)

References

  1. 1.
    Peoples MC, Karnes HT (2008) Journal of chromatography B: analytical technologies in the biomedical and life sciences 866:14–25CrossRefGoogle Scholar
  2. 2.
    Rossier JS, Girault HH (2001) Lab on a Chip - Minituarization for Chemistry and Biology 1:153–157CrossRefGoogle Scholar
  3. 3.
    Lionello A, Josserand J, Jensen H, Girault H (2005) Lab Chip 5:254–260CrossRefGoogle Scholar
  4. 4.
    Lionello A, Josserand J, Jensen H, Girault H (2005) Lab Chip 5:1096–1103CrossRefGoogle Scholar
  5. 5.
    Chen HX, Busnel JM, Gassner AL, Peltre G, Zhang XX, Girault HH (2008) Electrophoresis 29:3414–3421CrossRefGoogle Scholar
  6. 6.
    Chen HX, Busnel JM, Peltre G, Zhang XX, Girault HH (2008) Anal Chem 80:9583–9588CrossRefGoogle Scholar
  7. 7.
    Morier P, Vollet C, Michel PE, Reymond F, Rossier JS (2004) Electrophoresis 25:3761–3768CrossRefGoogle Scholar
  8. 8.
    Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) Lab on a Chip - Miniaturisation for Chemistry and Biology 7:1294–1302CrossRefGoogle Scholar
  9. 9.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys, D Appl Phys 36Google Scholar
  10. 10.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) J Biosci Bioeng 100:1–11CrossRefGoogle Scholar
  11. 11.
    Whitesides GM, Kazlauskas RJ, Josephson L (1983) Trends Biotech 1:144–148CrossRefGoogle Scholar
  12. 12.
    Safarik I, Safarikova M (1999) J Chromatogr, B, Biomed Sci Appl 722:33–53CrossRefGoogle Scholar
  13. 13.
    Safarikova M, Safarik I (1999) J Magn Magn Mater 194:108–112CrossRefGoogle Scholar
  14. 14.
    Janasek D, Franzke J, Manz A (2006) Nature 442:374–380CrossRefGoogle Scholar
  15. 15.
    Pamme N (2006) Lab on a Chip - Miniaturisation for Chemistry and Biology 6:24–38CrossRefGoogle Scholar
  16. 16.
    Verpoorte E (2003) Lab Chip 3Google Scholar
  17. 17.
    Gijs MAM (2004) Microfluidics and Nanofluidics 1:22–40Google Scholar
  18. 18.
    Man KH, Bruno Frazier A (2004) J Appl Physi 96:5797–5802CrossRefGoogle Scholar
  19. 19.
    Han KH, Frazier AB (2005) Journal of Microelectromechanical Systems 14:1422–1431CrossRefGoogle Scholar
  20. 20.
    Pamme N, Wilhelm C (2006) Lab on a Chip - Miniaturisation for Chemistry and Biology 6:974–980CrossRefGoogle Scholar
  21. 21.
    Furlani EP (2007) J Phys, D, Appl Phys 40:1313–1319CrossRefGoogle Scholar
  22. 22.
    Jung J, Han KH (2008) Appl Phys Lett 93Google Scholar
  23. 23.
    Qu BY, Wu ZY, Fang F, Bai ZM, Yang DZ, Xu SK (2008) Analytical and Bioanalytical Chemistry 392:1317–1324CrossRefGoogle Scholar
  24. 24.
    Korecká L, Jankovicová B, Krenková J, Hernychová L, Slováková M, Le-Nell A, Chmelík J, Foret F, Viovy JL, Bílková Z (2008) J Sep Sci 31:507–515CrossRefGoogle Scholar
  25. 25.
    Slovakova M, Minc N, Bilkova Z, Smadja C, Faigle W, Fütterer C, Taverna M, Viovy JL (2005) Lab on a Chip - Miniaturisation for Chemistry and Biology 5:935–942CrossRefGoogle Scholar
  26. 26.
    Peyman SA, Iles A, Pamme N (2008) Chem Commun 1220-1222Google Scholar
  27. 27.
    Lacharme F, Vandevyver C, Gijs MAM (2008) Anal Chem 80:2905–2910CrossRefGoogle Scholar
  28. 28.
    Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008) Lab on a Chip - Miniaturisation for Chemistry and Biology 8:2188–2196CrossRefGoogle Scholar
  29. 29.
    Smistrup K, Kjeldsen BG, Reimers JL, Dufva M, Petersen J, Hansen MF (2005) Lab on a Chip - Miniaturisation for Chemistry and Biology 5:1315–1319CrossRefGoogle Scholar
  30. 30.
    Minc N, Fütterer C, Dorfman KD, Bancaud A, Gosse C, Goubault C, Viovy JL (2004) Anal Chem 76:3770–3776CrossRefGoogle Scholar
  31. 31.
    Smistrup K, Stone HA (2007) Phys Fluids 19Google Scholar
  32. 32.
    Satarkar NS, Zhang W, Eitel RE, Hilt JZ (2009) Lab on a Chip - Miniaturisation for Chemistry and BiologyGoogle Scholar
  33. 33.
    Rida A, Gijs MAM (2004) Anal Chem 76:6239–6246CrossRefGoogle Scholar
  34. 34.
    Seong GH, Crooks RM (2002) J Am Chem Soc 124:13360–13361CrossRefGoogle Scholar
  35. 35.
    Biswal SL, Gast AP (2004) Anal Chem 76:6448–6455CrossRefGoogle Scholar
  36. 36.
    Wang Y, Zhe J, Chung BTF, Dutta P (2008) Microfluidics and Nanofluidics 4:375–389CrossRefGoogle Scholar
  37. 37.
    Lee SH, Van Noort D, Lee JY, Zhang BT, Park TH (2009) Lab on a Chip - Miniaturisation for Chemistry and Biology 9:479–482CrossRefGoogle Scholar
  38. 38.
    Hayes MA, Polson NA, Garcia AA (2001) Langmuir 17:2866–2871CrossRefGoogle Scholar
  39. 39.
    Gassner AL, Abonnenc M, Morandini J, Josserand J, Busnel JM, Girault H (2009) Lab ChipGoogle Scholar
  40. 40.
    Smistrup K, Lund-Olesen T, Hansen MF, Tang PT (2006) J Appl Physi 99Google Scholar
  41. 41.
    Mirowski E, Moreland J, Russek SE, Donahue MJ (2004) Appl Phys Lett 84:1786–1788CrossRefGoogle Scholar
  42. 42.
    Siegel AC, Shevkoplyas SS, Weibel DB, Bruzewicz DA, Martinez AW, Whitesides GM (2006) Angew Chem, Int Ed 45:6877–6882CrossRefGoogle Scholar
  43. 43.
    Bäuerle D (1988) Appl Phys, B Photophys Laser Chem 46:261–270CrossRefGoogle Scholar
  44. 44.
    Bäuerle D, Himmelbauer M, Arenholz E (1997) J Photochem Photobiol, A Chem 106:27–30CrossRefGoogle Scholar
  45. 45.
    Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Appl Phys Lett 78:1775–1777CrossRefGoogle Scholar
  46. 46.
    Abonnenc M, Dayon L, Perruche B, Lion N, Girault HH (2008) Anal Chem 80:3372–3378CrossRefGoogle Scholar
  47. 47.
    Dayon L, Abonnenc M, Prudent M, Lion N, Girault HH (2006) J Mass Spectrom 41:1484–1490CrossRefGoogle Scholar
  48. 48.
    Rohner TC, Rossier JS, Girault HH (2001) Anal Chem 73:5353–5357CrossRefGoogle Scholar
  49. 49.
    Bronzeau S, Pamme N (2008) Anal Chim Acta 609:105–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mélanie Abonnenc
    • 1
  • Anne-Laure Gassner
    • 1
  • Jacques Morandini
    • 2
  • Jacques Josserand
    • 1
  • Hubert H. Girault
    • 1
  1. 1.Laboratoire d’Electrochimie Physique et AnalytiqueEcole Polytechnique Fédérale de Lausanne (EPFL)-SB-ISIC-LEPA, Station 6LausanneSwitzerland
  2. 2.Astek Rhône-AlpesEchirollesFrance

Personalised recommendations