Advertisement

Analytical and Bioanalytical Chemistry

, Volume 395, Issue 7, pp 2015–2020 | Cite as

Multilayers quantitative X-ray fluorescence analysis applied to easel paintings

  • Laurence de Viguerie
  • V. Armando Sole
  • Philippe Walter
Original Paper

Abstract

X-ray fluorescence spectrometry (XRF) allows a rapid and simple determination of the elemental composition of a material. As a non-destructive tool, it has been extensively used for analysis in art and archaeology since the early 1970s. Whereas it is commonly used for qualitative analysis, recent efforts have been made to develop quantitative treatment even with portable systems. However, the interpretation of the results obtained with this technique can turn out to be problematic in the case of layered structures such as easel paintings. The use of differential X-ray attenuation enables modelling of the various layers: indeed, the absorption of X-rays through different layers will result in modification of intensity ratio between the different characteristic lines. This work focuses on the possibility to use XRF with the fundamental parameters method to reconstruct the composition and thickness of the layers. This method was tested on several multilayers standards and gives a maximum error of 15% for thicknesses and errors of 10% for concentrations. On a painting test sample that was rather inhomogeneous, the XRF analysis provides an average value. This method was applied in situ to estimate the thickness of the layers a painting from Marco d’Oggiono, pupil of Leonardo da Vinci.

Keywords

X-Ray fluorescence Quantitative analysis Multilayers Varnish Thickness estimation 

References

  1. 1.
    Hocquet F-P, Garnir H-P, Marchal A, Clar M, Oger C, Strivay D (2008) A remote controlled XRF system for field analysis of cultural heritage objects. X-Ray Spectrom 37:304–308CrossRefGoogle Scholar
  2. 2.
    Vittiglio G et al (2004) A compact µ-XRF spectrometer for (in situ) analyses of cultural heritage and forensic materials. Nucl Instrum Methods Phys Res B213:693–698Google Scholar
  3. 3.
    Moioli P, Seccaroni C (2000) Analysis of art objects using a portable X-ray fluorescence spectrometer. X-Ray Spectrom 29:48–52CrossRefGoogle Scholar
  4. 4.
    Hocquet F-P, Garnir H-P, Marchal A, Clar M, Oger C, Strivay D (2006) A remote controlled XRF system for field analysis of cultural heritage objects. X-Ray Spectrom 37:304–308CrossRefGoogle Scholar
  5. 5.
    Vittiglio G et al (2004) A compact µ-XRF spectrometer for (in situ) analyses of cultural heritage and forensic materials. Nucl Instrum Methods Phys Res B213:693–698Google Scholar
  6. 6.
    Moioli P, Seccaroni C (2000) Analysis of art objects using a portable X-ray fluorescence spectrometer. X-Ray Spectrom 29:48–52CrossRefGoogle Scholar
  7. 7.
    Jenkins R (1988) X-ray fluorescence spectrometry. Wiley, LondonGoogle Scholar
  8. 8.
    Han XY, Zhuo SJ, Shen RX, Wang PL, Ji A(2006) Comparison of the quantitative results corrected by fundamental parameter method and difference calibration specimens in x-ray fluorescence spectrometry. J. Quantitative Spectroscopy Radiative Transf 97: p68-74Google Scholar
  9. 9.
    Mantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29:3–17CrossRefGoogle Scholar
  10. 10.
    Beckhoff B, Kolbe M, Hahn O, Karydas A, Zarkadas Ch, Sokaras D, Mantler M (2008) Reference-free X-ray fluorescence analysis of an ancient Chinese ceramic. X-Ray Spectrom 37:462–465CrossRefGoogle Scholar
  11. 11.
    De Viguerie L, Duran A, Bouquillon A, Sole VA, Pierrat G, Castaing J and Walter P (2009) Quantitative X-Ray fluorescence analysis of an Egyptian Pendant and comparison with PIXE. Anal Bioanal Chem. doi: 10.1007/s00216-009-2947-7
  12. 12.
    Smit Z, Janssens K, Proost K, Langus I (2004) Confocal µ-XRF depth analysis of paint layers, beam interactions with materials and atoms. Nucl Instr Methods Phys Res B219–220:35–40CrossRefGoogle Scholar
  13. 13.
    Mantouvalou I, Malzer W, Schaumann I, Lühl L, Dargel R, Vogt C, Kanngiesser B (2008) Reconstruction of thickness and composition of stratified materials by means of 3D micro x-ray fluorescence spectroscopy. Anal Chem 80:819–826CrossRefGoogle Scholar
  14. 14.
    De Boer DKG (1990) Calculation of X-ray fluorescence intensities from bulk and multilayer samples. X-Ray Spectrom 19:145–154CrossRefGoogle Scholar
  15. 15.
    De Boer DKG, Borstrok JJM, Leenaers AJG, Van Sprang HA, Brouwer PN (1993) How accurate is the fundamental parameter approach? XRF analysis of bulk and multilayer samples. X-Ray Spectrom 22:33–38CrossRefGoogle Scholar
  16. 16.
    Nygard K, Hamalainen K, Manninen S, Jalas P, Ruottinen JP (2004) Quantitative thickness determination using X-ray fluorescence: application to multiple layers. X-Ray Spectrom 33:354–359CrossRefGoogle Scholar
  17. 17.
    Bonizzoni L, Galli A, Poldi G, Milazzo M (2007) In-situ non invasive EDXRF analysis to reconstruct stratigraphy and thickness of Renaissance pictorial multilayers. X-Ray Spectrom 36:55–61CrossRefGoogle Scholar
  18. 18.
    Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray f luorescence spectra. Spectrochim Acta B 62: 63-68. (web site: http://pymca.sourceforge.net/)
  19. 19.
    Dunkerton J, Gordon SFD, Penny N (1999) Durer to Veronese, sixteenth-century painting in The National Gallery. LondonGoogle Scholar
  20. 20.
    Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. Atom Data Nucl Data 54:181–342CrossRefGoogle Scholar
  21. 21.
    Bonizzoni L, Galli A, Poldi G, Milazzo M (2007) In-situ non invasive EDXRF analysis to reconstruct stratigraphy and thickness of Renaissance pictorial multilayers. X-Ray Spectrom 36:55–61CrossRefGoogle Scholar
  22. 22.
    de Viguerie L, Beck L, Salomon J, Pichon L, Walter P (2009) Composition of Renaissance paint layers: Simultaneous PIXE and Backscattering Spectrometry. Anal Chem in pressGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Laurence de Viguerie
    • 1
  • V. Armando Sole
    • 2
  • Philippe Walter
    • 1
  1. 1.Centre de Recherche et de Restauration des Musées de France, C2RMF, Palais du LouvrePorte des LionsParisFrance
  2. 2.European Synchrotron Radiation FacilityESRFGrenobleFrance

Personalised recommendations