Analytical and Bioanalytical Chemistry

, Volume 396, Issue 1, pp 85–104

A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems



With the implementation of focused primary ion beams, secondary ion mass spectrometry (SIMS) has become a significant technique in the rapidly emerging field of mass spectral imaging in the biological sciences. Liquid metal ion guns (LMIG) offered the prospect of sub-100 nm spatial resolution, however this aspiration has yet to be reached for molecular imaging. This brief review shows that using LMIG the limitations of the static limit and low ionization probability will restrict useful imaging to around 2 μm spatial resolution with high-yield molecules. The only prospect of going beyond this in the absence of factors of 100 increase in ionization probability is to use polyatomic ion beams such as C60+, for which bombardment induced damage is low. In these cases sub-micron imaging becomes possible, using voxels together with molecular depth profiling and 3D imaging. The discussion shows that conventional ToF-SIMS instrumentation then becomes a limitation in that the pulsed ion beam has a very low duty cycle which results in inordinately long analysis times, and pulsing the beam means that high-mass resolution and high spatial resolution are mutually incompatible. New instrumental configurations are described that allow the use of a dc ion beam and separate the mass spectrometry for the ion formation process. Early results from these instruments suggest that sub-micron analysis and imaging with high mass resolution and good ion yields are now realizable, although the low ion yield issue still needs to be solved.


SIMS Imaging mass spectrometry Depth profiling 2D imaging 3D imaging 


  1. 1.
    Prewett PD, Mair GLR (1991) Focused ion beams from liquid metal ion sources. Research Studies Press, TauntonGoogle Scholar
  2. 2.
    Cliff B, Lockyer N, Jüngnickel H, Stephens G, Vickerman JC (2003) Rap Comm Mass Spectrom 17:2163CrossRefGoogle Scholar
  3. 3.
    Braun RM, Blenkinsopp P, Mullock SR, Corlett C, Willey KF, Vickerman JC, Winograd N (1998) Rap Comm Mass Spectrom 12:1246CrossRefGoogle Scholar
  4. 4.
    Ostrowski SG, Van Bell CT, Winograd N, Ewing AG (2004) Science 305:71CrossRefGoogle Scholar
  5. 5.
    Delcorte A, Garrison BJ (2001) Nucl Inst Methods B 180:37CrossRefGoogle Scholar
  6. 6.
    Benguerba M, Brunelle A, Della-Negra S, Depauw J, Joret H, Le Beyec Y, Blain MG, Schweikert EA, Ben Assayag G, Sudraund P (1991) Nucl Instr Meth Phys Res B62:8CrossRefGoogle Scholar
  7. 7.
    Le Beyec Y (1998) Int J Mass Spectrom 174:101CrossRefGoogle Scholar
  8. 8.
    Harris RD, Baker WS, Van Stipdonk MJ, Crooks RM, Schweikert EA (1999) Rapid Commun Mass Spectrom 13:1374CrossRefGoogle Scholar
  9. 9.
    Harris RD, Van Stipdonk MJ, Schweikert EA (1998) Int J Mass Spectrom Ion Proc 174:167CrossRefGoogle Scholar
  10. 10.
    Davies N, Weibel DE, Lockyer NP, Blenkinsopp P, Hill R, Vickerman JC (2002) Appl Surf Sci 203-204:223CrossRefGoogle Scholar
  11. 11.
    Wong SCC, Blenkinsopp P, Lockyer NP, Weibel DE, Vickerman JC (2002) Appl Surf Sci 203–204:219Google Scholar
  12. 12.
    Weibel DE, Wong SCC, Lockyer N, Blenkinsopp P, Hill R, Vickerman JC (2003) Anal Chem 75:1754CrossRefGoogle Scholar
  13. 13.
    Tomboul D, Kollmer F, Niehuis E, Brunelle A, Laprévote O (2005) J Am Soc Mass Spectrom 16:1608CrossRefGoogle Scholar
  14. 14.
    Szakal C, Kozole J, Garrison BJ, Winograd N (2006) Phys Rev Lett 96:216104CrossRefGoogle Scholar
  15. 15.
    Cheng J, Winograd N (2005) Anal Chem 77:3651CrossRefGoogle Scholar
  16. 16.
    Sjövall P, Lausmaa J, Johansson B, Andersson M (2004) Anal Chem 76:4271–4278CrossRefGoogle Scholar
  17. 17.
    Nygren H, Borner K, Hagenhoff B, Malmberg P, Mansson JE (2005) Biochim Biophys Acta 1737:102–110Google Scholar
  18. 18.
    Touboul D, Brunelle A, Halgand F, De La Porte S, Laprévote O (2005) J Lipid Res 46:1388–1395CrossRefGoogle Scholar
  19. 19.
    Tahallah N, Brunelle A, De La Porte S, Laprévote O (2008) J Lipid Res 49:438–454CrossRefGoogle Scholar
  20. 20.
    Debois D, Bralet M-P, Le Naour F, Brunelle A, Laprévote O (2009) Anal Chem 81:2823–2831CrossRefGoogle Scholar
  21. 21.
    Gillen G, Simons DS, Williams P (1990) Anal Chem 62:2122–2130CrossRefGoogle Scholar
  22. 22.
    Jones EA, Lockyer NP, Vickerman JC (2007) Int J Mass Spectrom 260:146–157CrossRefGoogle Scholar
  23. 23.
    Russo MF Jr, Wojciechowski IA, Garrison BJ (2006) Appl Surf Sci 252:6423CrossRefGoogle Scholar
  24. 24.
    Ryan KE, Wojciechowski IA, Garrison BJ (2007) J Phys Chem C 111:12822CrossRefGoogle Scholar
  25. 25.
    Cheng J, Wucher A, Winograd N (2006) J Phys Chem B 110:8329–8336CrossRefGoogle Scholar
  26. 26.
    Gillen G, Fahey A, Wagner M, Mahoney C (2006) Appl Surf Sci 252:6537CrossRefGoogle Scholar
  27. 27.
    Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprévote O (2005) J Am Soc Mass Spectrom 16:1608CrossRefGoogle Scholar
  28. 28.
    Vaidyanathan S, Fletcher JS, Goodacre R, Lockyer NP, Micklefield J, Vickerman JC (2008) Anal Chem 80:1942CrossRefGoogle Scholar
  29. 29.
    Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC (2007) Anal Chem 79:2199CrossRefGoogle Scholar
  30. 30.
    Breitenstein D, Rommel CE, Möllers R, Wegener J, Hagenhoff B (2007) Angew Chem Int Ed 46:5332CrossRefGoogle Scholar
  31. 31.
    Nygren H, Hagenhoff B, Malmberg P, Nilsson M, Richter K (2007) Micros Res Tech 70:969–974CrossRefGoogle Scholar
  32. 32.
    Debois D, Brunelle A, Laprévote O (2007) Int J Mass Spectrom 260:115–120CrossRefGoogle Scholar
  33. 33.
    Jones EA, Lockyer NP, Vickerman JC (2008) Anal Chem 80:2125–2132CrossRefGoogle Scholar
  34. 34.
    Cheng J, Winograd N (2005) Anal Chem 77:3651–3659CrossRefGoogle Scholar
  35. 35.
    Shard AG, Brewer PJ, Green FM, Gilmore IS (2007) Surf Interface Anal 39:294–298CrossRefGoogle Scholar
  36. 36.
    Sjovall P, Johansson B, Lausmaa J (2006) Appl Surf Sci 252:6966–6974CrossRefGoogle Scholar
  37. 37.
    Piwowar AM, Lockyer NP, Vickerman JC (2009) Anal Chem 81:1040–1048CrossRefGoogle Scholar
  38. 38.
    Fletcher JS, Henderson A, Biddulph GX, Vaidyanathan S, Lockyer N, Vickerman JC (2008) Appl Surf Sci 255:1264–1270CrossRefGoogle Scholar
  39. 39.
    Loboda AV, Krutchinsky AN, Bromirski M, Ens W, Standing KG (2000) Rapid Commun Mass Spectrom 14:1047CrossRefGoogle Scholar
  40. 40.
    Carado A, Passarelli MK, Kozole J, Wingate JE, Winograd N, Loboda AV (2008) Anal Chem 80:7921–7929CrossRefGoogle Scholar
  41. 41.
    Fletcher JS, Rabbani S, Henderson A, Blenkinsopp P, Thompson SP, Lockyer NP, Vickerman JC (2008) Anal Chem 80:9058–9064CrossRefGoogle Scholar
  42. 42.
    Makarov AA, Raptakis EN, Derrick PJ (1995) Int J Mass Spectrom Ion Proc 146:165–182CrossRefGoogle Scholar
  43. 43.
    Leggett GJ, Briggs D, Vickerman JC (1991) Surf Interface Anal 17:737–744CrossRefGoogle Scholar
  44. 44.
    Leggett GJ, Vickerman JC (1992) Int J Mass Spectrom Ion Proc 122:281–319CrossRefGoogle Scholar
  45. 45.
    Todd PJ, McMahon JM, Short RT (1995) Int J Mass Spectrom Ion Proc 143:131–145CrossRefGoogle Scholar
  46. 46.
    Wucher A, Sun S, Szakal C, Winograd N (2004) Anal Chem 76:7234CrossRefGoogle Scholar
  47. 47.
    Conlan XA, Lockyer NP, Vickerman JC (2006) Rapid Commun Mass Spectrom 20:1327CrossRefGoogle Scholar
  48. 48.
    Wucher A, Cheng J, Winograd N (2007) Anal Chem 79:5529–5539Google Scholar
  49. 49.
    Jones EA, Lockyer NP, Kordys J, Vickerman JC (2007) J Am Soc Mass Spec 18:1559–1567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical ScienceThe University of ManchesterManchesterUK

Personalised recommendations