Advertisement

Analytical and Bioanalytical Chemistry

, Volume 395, Issue 1, pp 225–234 | Cite as

Using the solvation parameter model to characterize functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion

  • Qichao Zhao
  • Jens Eichhorn
  • William R. Pitner
  • Jared L. AndersonEmail author
Original Paper

Abstract

Ionic liquids (ILs) containing the tris(pentafluoroethyl)trifluorophosphate anion [FAP] have attracted increased attention due to their unique properties including ultrahigh hydrophobicity, hydrolytic stability, and wide electrochemical window. In this study, the solvation parameter model is used via gas chromatography to characterize the solvation interactions of seven ILs containing amino, ester, and hydroxyl functional groups appended to the cation and paired with [FAP], as well as three ILs containing the bis[(trifluoromethyl)sulfonyl]imide anion [NTf2]. The role of the functional groups, nature of the counter anion, and cation type on the system constants were evaluated. ILs containing [FAP] possessed lower hydrogen bond basicity than NTf2-based ILs having the same cationic component; in the case of hydroxyl-functionalized cations, the presence of [FAP] led to an enhancement of the hydrogen bond acidity, relative to the NTf2-analogs. The system constants support the argument that [FAP] weakly coordinates the cation and any appended functional groups, promoting properties of the cation which might be masked by stronger interactions with other anion systems. The chromatographic performance of the IL stationary phases was evaluated by examining the retention behavior and separation selectivity for chosen analytes. The results from this work can be used as a guide for choosing FAP-based ILs capable of exhibiting desired solvation properties while retaining important physical properties including high thermal stability and high hydrophobicity.

Figure

In this study, the solvation parameter model is used via gas chromatography to characterize the solvation interactions of seven ILs containing amino, ester, and hydroxyl functional groups appended to the cation and paired with tris(pentafluoroethyl)trifluorophosphate [FAP], as well as three ILs containing the bis[(trifluoromethyl)sulfonyl]imide anion [NTf2].

Keywords

Ionic liquid Functionalized ionic liquid Gas chromatography Stationary phase Selectivity Tris(pentafluoroethyl)trifluorophosphate FAP Solvation 

Notes

Acknowledgements

J.L.A. acknowledges funding from the Analytical and Surface Chemistry Program in the Division of Chemistry and the Separation and Purification Processes Program in the Chemical, Environmental, Bioengineering, and Transport Systems Division from the National Science Foundation for a CAREER grant (CHE-0748612).

Supplementary material

216_2009_2951_MOESM1_ESM.pdf (687 kb)
Electronic supplementary material 1H-NMR and ESI–MS spectra of the ILs evaluated in this study are presented. The list of the 42 solutes and their corresponding solute descriptors used to characterize the IL stationary phases in this study are given in Table S-1. (PDF 687 kb)

References

  1. 1.
    Welton T (1999) Chem Rev 99:2071–2083CrossRefGoogle Scholar
  2. 2.
    Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39:3772–3789Google Scholar
  3. 3.
    Cole AC, Jensen JL, Ntai I, Tran KR, Weaver KJ, Forbes DC, Davis JH (2002) J Am Chem Soc 124:5962–5963CrossRefGoogle Scholar
  4. 4.
    Handy ST, Zhang X (2001) Org Lett 3:233–236CrossRefGoogle Scholar
  5. 5.
    Dai S, Ju YH, Barnes CE (1999) J Chem Soc Dalton Trans 8:1201–1202CrossRefGoogle Scholar
  6. 6.
    Chun S, Dzyuba SV, Bartsch RA (2001) Anal Chem 73:3737–3741CrossRefGoogle Scholar
  7. 7.
    Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2001) Chem Commun 135–136Google Scholar
  8. 8.
    Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT (2003) Anal Chem 75:5870–5876CrossRefGoogle Scholar
  9. 9.
    Liu J-F, Li N, Jiang G-B, Liu J-M, Jönsson JÅ, Wen M-J (2005) J Chromatogr A 1066:27–32CrossRefGoogle Scholar
  10. 10.
    Hsieh Y-N, Huang P-C, Sun I-W, Whang T-J, Hsu C-Y, Huang H-H, Kuei C-H (2006) Anal Chim Acta 557:321–328CrossRefGoogle Scholar
  11. 11.
    Zhao F, Meng Y, Anderson JL (2008) J Chromatogr A 1208:1–9CrossRefGoogle Scholar
  12. 12.
    Armstrong DW, Zhang LK, He L, Gross ML (2001) Anal Chem 73:3679–3686CrossRefGoogle Scholar
  13. 13.
    Mank M, Stahl B, Boehm G (2004) Anal Chem 76:2938–2950CrossRefGoogle Scholar
  14. 14.
    Li YL, Gross ML (2004) J Am Soc Mass Spectrom 15:1833–1837CrossRefGoogle Scholar
  15. 15.
    Dickinson EV, Williams ME, Hendrickson SM, Masui H, Murray RW (1999) J Am Chem Soc 121:613–616CrossRefGoogle Scholar
  16. 16.
    Doyle KP, Lang CM, Kim K, Kohl PA (2006) J Electrochem Soc 153:A1353–A1357CrossRefGoogle Scholar
  17. 17.
    Poole CF (2004) J Chromatogr A 1037:49–82CrossRefGoogle Scholar
  18. 18.
    Anderson JL, Armstrong DW (2003) Anal Chem 75:4851–4858CrossRefGoogle Scholar
  19. 19.
    Stalcup AM, Cabovska B (2004) J Liq Chromatogr Relat Technol 27:1443–1459Google Scholar
  20. 20.
    Chan SS, Willis CJ (1968) Can J Chem 46:1237–1248CrossRefGoogle Scholar
  21. 21.
    Swatloski RP, Holbrey JD, Rogers RD (2003) Green Chem 5:361–363CrossRefGoogle Scholar
  22. 22.
    Ignat’ev NV, Welz-Biermann U, Kucheryna A, Bissky G, Willner H (2005) J Fluorine Chem 126:1150–1159CrossRefGoogle Scholar
  23. 23.
    O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) J Chem Eng Data 53:2884–2891CrossRefGoogle Scholar
  24. 24.
    Abedin SZ, Borissenko N, Endres F (2004) Electrochem Commun 6:422–426CrossRefGoogle Scholar
  25. 25.
    Duffy NW, Bond AW (2006) Electrochem Commun 8:892–898CrossRefGoogle Scholar
  26. 26.
    Millefiorini S, Tkaczyk AH, Sedev R, Efthimiadis J, Ralston J (2006) J Am Chem Soc 128:3098–3101CrossRefGoogle Scholar
  27. 27.
    Muldoon MJ, Aki SN, Anderson JL, Dixon JK, Brennecke JF (2007) J Phys Chem B 111:9001–9009CrossRefGoogle Scholar
  28. 28.
    Chrobok A, Swadzba M, Baj S (2007) Polish J Chem 81:337–344Google Scholar
  29. 29.
    Abraham MH (1993) Chem Soc Rev 22:73–83CrossRefGoogle Scholar
  30. 30.
    Anderson JL, Ding J, Welton T, Armstrong DW (2002) J Am Chem Soc 124:14247–14254CrossRefGoogle Scholar
  31. 31.
    Mutelet F, Jaubert JN (2006) J Chromatogr A 1102:256–267CrossRefGoogle Scholar
  32. 32.
    Hsieh YN, Ho WY, Horng RS, Huang PC, Hsu CY, Huang HH, Kuei CH (2007) Chromatographia 66:607–611CrossRefGoogle Scholar
  33. 33.
    Sprunger LM, Proctor A, Acree WE, Abraham MH (2008) Fluid Phase Equilib 265:104–111CrossRefGoogle Scholar
  34. 34.
    Baltazar QQ, Leininger SK, Anderson JL (2008) J Chromatogr A 1182:119–127CrossRefGoogle Scholar
  35. 35.
    Bates ED, Mayton RD, Ntai I, Davis JH (2002) J Am Chem Soc 124:926–927CrossRefGoogle Scholar
  36. 36.
    Froehlich U (2005) Chirality and ionic liquids. Ph.D. dissertation. Queen’s University of BelfastGoogle Scholar
  37. 37.
    Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T (2003) Phys Chem Chem Phys 5:2790–2794CrossRefGoogle Scholar
  38. 38.
    Sharma NK, Tickell MD, Anderson JL, Kaar J, Pino V, Wicker BF, Armstrong DW, Davis JH, Russell AJ (2006) Chem Commun 646–648Google Scholar
  39. 39.
    Zhang XM, Bordwell FG, Puy MVD, Fried HE (1993) J Org Chem 58:3060–3066CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Qichao Zhao
    • 1
  • Jens Eichhorn
    • 2
  • William R. Pitner
    • 2
  • Jared L. Anderson
    • 1
    Email author
  1. 1.Department of ChemistryThe University of ToledoToledoUSA
  2. 2.Merck KGaADarmstadtGermany

Personalised recommendations