Analytical approach for characterization of cadmium-induced thiol peptides—a case study using Chlamydomonas reinhardtii

  • Anja Bräutigam
  • Dirk Schaumlöffel
  • Gerd-Joachim Krauss
  • Dirk Wesenberg
Original Paper
  • 189 Downloads

Abstract

Phytochelatins (PC) were described earlier to play a role in metal detoxification in Chlamydomonas reinhardtii but were not clearly identified. The focus of this case study was to identify PC synthesized by C. reinhardtii exposed to Cd. Only low intracellular concentrations of cadmium (85 nmol g−1 fresh weight) were sufficient to cause significant changes in thiol peptide pools. Thus, results showed a progressive decline of the glutathione content, accompanied by an induction of phytochelatins. Not only canonic phytochelatins but for the first time also the iso-phytochelatins CysPCn and PC2Ala were identified in this unicellular green alga using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Additionally, CysPCndesGly, PCndesGly, CysPCnGlu, and PC2Glu were found throughout MS analysis. Also, low abundant PCs could be detected due to the high sample preconcentration combined with little sample amounts (0.3 μL min−1) necessary for electrospray. Identified PCs had a maximum number of 5 γ-glutamyl cysteine (γ-GluCys) units. Thiol peptides of higher molecular masses suggesting PCn with n > 5 could be identified as intermolecular oxidation products of smaller PCs. Thiols may easily be oxidized. Therefore, PCs were reduced prior to MS analysis. Dithiothreitol and tris(2-carboxyethyl) phosphine were compared concerning their reduction effort.

Figure

Chlamydomonas reinhardtii synthesizes isoforms of phytochelatins.

Keywords

Cadmium Chlamydomonas Thiols Iso-phytochelatins DTT TCEP 

References

  1. 1.
    Lee T, Lai H, Chen Z (2004) Chemosphere 57:1459–1471CrossRefGoogle Scholar
  2. 2.
    Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Chemosphere 64:1–10CrossRefGoogle Scholar
  3. 3.
    Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Adv Exp Med Biol 616:99–109CrossRefGoogle Scholar
  4. 4.
    Harris E (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic, New YorkGoogle Scholar
  5. 5.
    Hanikenne M (2003) New Phytol 159:331–340CrossRefGoogle Scholar
  6. 6.
    Salt DE, Kato N, Krämer U, Smith RD, Raskin I (1999) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and non-accumulator species of Thlaspi. In: Terry VN, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 189–200Google Scholar
  7. 7.
    Macfie SM, Welbourn PM (2000) Arch Environ Contam Toxicol 39:413–419CrossRefGoogle Scholar
  8. 8.
    Adhiya J, Cai X, Sayre RT, Traina SJ (2002) Colloids Surf A 210:1–11CrossRefGoogle Scholar
  9. 9.
    Rosakis A, Köster W (2005) BioMetals 18:107–120CrossRefGoogle Scholar
  10. 10.
    Krämer U, Talke IN, Hanikenne M (2007) FEBS Lett 581:2263–2272CrossRefGoogle Scholar
  11. 11.
    Clemens S (2001) Planta 212:475–486CrossRefGoogle Scholar
  12. 12.
    Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) J Phycol 39:1008–1018CrossRefGoogle Scholar
  13. 13.
    Grill E, Zenk MH, Winnacker E (1985) Naturwiss 72:432–433CrossRefGoogle Scholar
  14. 14.
    Ernst WHO, Krauss G, Verkleij JAC, Wesenberg D (2008) Plant Cell Environ 31:123–143Google Scholar
  15. 15.
    Clemens S (2006) J Plant Physiol 163:319–332CrossRefGoogle Scholar
  16. 16.
    Howe G, Merchant S (1992) Plant Physiol 98:127–136CrossRefGoogle Scholar
  17. 17.
    Hu S, Lau KWK, Wu M (2001) Plant Sci 161:987–996CrossRefGoogle Scholar
  18. 18.
    Grill E, Winnacker E, Zenk MH (1987) Proc Natl Acad Sci U S A 84:439–443CrossRefGoogle Scholar
  19. 19.
    Chassaigne H, Vacchina V, Kutchan TM, Zenk MH (2001) Phytochem 56:657–668CrossRefGoogle Scholar
  20. 20.
    Sarry J, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) Proteomics 6:2180–2198CrossRefGoogle Scholar
  21. 21.
    Pawlik-Skowronska B (2001) Aquat Toxicol 52:241–249CrossRefGoogle Scholar
  22. 22.
    Pawlik-Skowronska B (2002) Environ Pollut 119:119–127CrossRefGoogle Scholar
  23. 23.
    Vacchina V, Lobinski R, Oven M, Zenk MH (2000) J Anal At Spectrom 15:529–534CrossRefGoogle Scholar
  24. 24.
    Rauser WE, Hunziker PE, Kägi JH (1986) Plant Sci 45:105–109CrossRefGoogle Scholar
  25. 25.
    Meuwly P, Thibault P, Schwan AL, Rauser WE (1995) Plant J 7:391–400CrossRefGoogle Scholar
  26. 26.
    Klapheck S, Schlunz S, Bergmann L (1995) Plant Physiol 107:515–521Google Scholar
  27. 27.
    Kubota H, Sato K, Yamada T, Maitani T (2000) Phytochem 53:239–245CrossRefGoogle Scholar
  28. 28.
    Gekeler W, Grill E, Winnacker E, Zenk MH (1988) Arch Microbiol 150:197–202CrossRefGoogle Scholar
  29. 29.
    Kobayashi I, Fujiwara S, Saegusa H, Inouhe M, Matsumoto H, Tsuzuki M (2006) Mar Biotechnol 8:94–101CrossRefGoogle Scholar
  30. 30.
    Nishikawa K, Onodera A, Tominaga N (2006) Chemosphere 63:1553–1559CrossRefGoogle Scholar
  31. 31.
    Lavoie M, Le Faucheur S, Fortin C, Campbell PG (2009) Aquat Toxicol 92:65–75CrossRefGoogle Scholar
  32. 32.
    Ellman GL (1959) Arch Biochem Biophys 82:70–77CrossRefGoogle Scholar
  33. 33.
    Newton GL, Fahey RC (1995) Methods Enzymol 251:148–66CrossRefGoogle Scholar
  34. 34.
    Ahner BA, Price NM, Morel FM (1994) Proc Natl Acad Sci U S A 91:8433–8436CrossRefGoogle Scholar
  35. 35.
    Fahey RC, Newton GL (1987) Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. In: Jacoby WB, Griffith OW (eds) Sulfur and sulfur amino acids. Academic, Orlando, pp 85–96CrossRefGoogle Scholar
  36. 36.
    Sneller F, van Heerwaarden L, Koevoets P, Vooijs R, Schat H, Verkleij J (2000) J Agric Food Chem 48:4014–4019CrossRefGoogle Scholar
  37. 37.
    El-Zohri MHA, Cabala R, Frank H (2005) Anal Bioanal Chem 382:1871–1876CrossRefGoogle Scholar
  38. 38.
    Karas M, Bahr U, Dülcks T (2000) Fresenius J Anal Chem 366:669–676CrossRefGoogle Scholar
  39. 39.
    Schmidt A, Karas M, Dülcks T (2003) J Am Soc Mass Spectrom 14:492–500CrossRefGoogle Scholar
  40. 40.
    Tang L, Kebarle P (1993) Anal Chem 65:3654–3668CrossRefGoogle Scholar
  41. 41.
    Vacchina V, Polec K, Szpunar J (1999) J Anal At Spectrom 14:1557–1566CrossRefGoogle Scholar
  42. 42.
    Arnon DI (1949) Plant Physiol 24:1–15CrossRefGoogle Scholar
  43. 43.
    Berlich M, Menge S, Bruns I, Schmidt J, Schneider B, Krauss G (2002) Analyst 127:333–336CrossRefGoogle Scholar
  44. 44.
    Han JC, Han GY (1994) Anal Biochem 220:5–10CrossRefGoogle Scholar
  45. 45.
    Martin MN, Slovin JP (2000) Plant Physiol 122:1417–1426CrossRefGoogle Scholar
  46. 46.
    Klapheck S (1988) Physiol Plant 74:727–732CrossRefGoogle Scholar
  47. 47.
    Oven M, Page JE, Zenk MH, Kutchan TM (2002) J Biol Chem 277:4747–4754CrossRefGoogle Scholar
  48. 48.
    Carnegie PR (1963) Biochem J 89:459–471Google Scholar
  49. 49.
    Dorčák V, Krężel A (2003) Dalton Trans (11):2253–2259Google Scholar
  50. 50.
    Cruz BH, Díaz-Cruz JM, Sestáková I, Velek J, Ariño C, Esteban M (2002) J Electroanal Chem 520:111–118CrossRefGoogle Scholar
  51. 51.
    Strasdeit H, Duhme A, Kneer R, Zenk MH, Hermes C, Nolting H (1991) J Chem Soc Chem Commun 1129-1130Google Scholar
  52. 52.
    Devriese M, Tsakaloudi V, Garbayo I, León R, Vílchez C, Vigara J (2001) Plant Physiol Biochem 39:443–448CrossRefGoogle Scholar
  53. 53.
    Gillet S, Decottignies P, Chardonnet S, Le Maréchal P (2006) Photosynth Res 89:201–211CrossRefGoogle Scholar
  54. 54.
    Torres E, Cid A, Fidalgo P, Herrero C, Abalde J (1997) Aquat Toxicol 39:231–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Anja Bräutigam
    • 1
  • Dirk Schaumlöffel
    • 2
  • Gerd-Joachim Krauss
    • 1
  • Dirk Wesenberg
    • 1
  1. 1.Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Ökologische und Pflanzen-BiochemieHalle (Saale)Germany
  2. 2.CNRS—Université de Pau, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254 IPREMPauFrance

Personalised recommendations