Analytical and Bioanalytical Chemistry

, Volume 396, Issue 1, pp 163–172 | Cite as

Material ejection and redeposition following atmospheric pressure near-field laser ablation on molecular solids

  • Liang Zhu
  • Gerardo Gamez
  • Thomas A. Schmitz
  • Frank Krumeich
  • Renato Zenobi
Original Paper


Near-field laser ablation (NF-LA) coupled with mass spectrometry (MS) is very promising for highly spatially resolved chemical analyses on various substrates at atmospheric pressure, for example, in materials and life science applications. Although nanoscale sample craters can be produced routinely, no molecular mass spectra of ablated material from craters of ≤1 µm diameter have ever been acquired by NF-LA MS at atmospheric pressure. Some of the pressing questions are thus how much of the ablated material is transported into the mass spectrometer and in what form. Therefore, material redeposition on the near-field tip’s surface from laser ablation of molecular solids was characterized with scanning electron microscopy. The crater profiles were studied by scanning probe microscopy. The results shown in this study demonstrate that there could be as much as 70% of the ablated material deposited on the near-field tip’s surface. The redeposited products were found to be confined to a height of ~50 µm, thus suggesting that most components inside near-field ablation plumes propagate about the same distance for both anthracene and tris(8-hydroxyquinolinato)aluminum. Nanoparticles ablated from craters of ≤1 µm diameter are clearly observed. Furthermore, observation of tips after ablation of an anthracene surface angled at 60° with respect to a horizontal surface shows that the direction of the near-field ablation plume is neither in the direction of the surface normal nor towards the axis of incident laser beam but deflected further away from surface normal.


Material redeposition on the near-field tip's surface from laser ablation of molecular solids was characterized with scanning electron microscopy.


Near field Laser ablation Molecular solids Atmospheric pressure SEM 



SEM was carried out at EMEZ (electron microscopy ETH Zurich).


  1. 1.
    Bailo E, Deckert V (2008) Chem Soc Rev 37:921–930CrossRefGoogle Scholar
  2. 2.
    Yeo BS, Madler S, Schmid T, Zhang WH, Zenobi R (2008) J Phys Chem C 112:4867–4873CrossRefGoogle Scholar
  3. 3.
    Zhang WH, Yeo BS, Schmid T, Zenobi R (2007) J Phys Chem C 111:1733–1738CrossRefGoogle Scholar
  4. 4.
    Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Science 251:1468–1470CrossRefGoogle Scholar
  5. 5.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Proc Natl Acad Sci U S A 97:8206–8210CrossRefGoogle Scholar
  6. 6.
    Dunn RC (1999) Chem Rev 99:2891–2992CrossRefGoogle Scholar
  7. 7.
    McDonnell LA, Heeren RMA (2007) Mass Spectrom Rev 26:606–643CrossRefGoogle Scholar
  8. 8.
    Laiko VV, Baldwin MA, Burlingame AL (2000) Anal Chem 72:652–657CrossRefGoogle Scholar
  9. 9.
    Laiko VV, Taranenko NI, Berkout VD, Yakshin MA, Prasad CR, Lee HS, Doroshenko VM (2002) J Am Soc Mass Spectrom 13:354–361CrossRefGoogle Scholar
  10. 10.
    Jurchen JC, Rubakhin SS, Sweedler JV (2005) J Am Soc Mass Spectrom 16:1654–1659CrossRefGoogle Scholar
  11. 11.
    Koestler M, Kirsch D, Hester A, Leisner A, Guenther S, Spengler B (2008) Rapid Commun Mass Spectrom 22:3275–3285CrossRefGoogle Scholar
  12. 12.
    Chaurand P, Schriver KE, Caprioli RM (2007) J Mass Spectrom 42:476–489CrossRefGoogle Scholar
  13. 13.
    Luxembourg SL, Mize TH, McDonnell LA, Heeren RMA (2004) Anal Chem 76:5339–5344CrossRefGoogle Scholar
  14. 14.
    Spengler B, Hubert M (2002) J Am Soc Mass Spectrom 13:735–748CrossRefGoogle Scholar
  15. 15.
    Altelaar AFM, Taban IM, McDonnell LA, Verhaert P, de Lange RPJ, Adan RAH, Mooi WJ, Heeren RMA, Piersma SR (2007) Int J Mass Spectrom 260:203–211CrossRefGoogle Scholar
  16. 16.
    Heeren RMA, Altelaar AFM, Taban IM, McDonnell LA, Verhaert PDEM, de Lange RPJ, Adan RAH, Mooi WJ, Piersma SR (2007) Int J Mass Spectrom 260:203–211CrossRefGoogle Scholar
  17. 17.
    Sherrod SD, Castellana ET, McLean JA, Russell DH (2007) Int J Mass Spectrom 262:256–262CrossRefGoogle Scholar
  18. 18.
    Touboul D, Halgand F, Brunelle A, Kersting R, Tallarek E, Hagenhoff B, Laprevote O (2004) Anal Chem 76:1550–1559CrossRefGoogle Scholar
  19. 19.
    Dutoit B, Zeisel D, Deckert V, Zenobi R (1997) J Phys Chem B 101:6955–6959CrossRefGoogle Scholar
  20. 20.
    Zeisel D, Nettesheim S, Dutoit B, Zenobi R (1996) Appl Phys Lett 68:2491–2492CrossRefGoogle Scholar
  21. 21.
    Meyer KA, Ovchinnikova O, Ng K, Goeringer DE (2008) Rev Sci Instrum 79:123710CrossRefGoogle Scholar
  22. 22.
    Chimmalgi A, Choi TY, Grigoropoulos CP, Komvopoulos K (2003) Appl Phys Lett 82:1146–1148CrossRefGoogle Scholar
  23. 23.
    Zoriy MV, Becker JS (2009) Rapid Commun Mass Spectrom 23:23–30CrossRefGoogle Scholar
  24. 24.
    Zoriy MV, Kayser M, Becker JS (2008) Int J Mass Spectrom 273:151–155CrossRefGoogle Scholar
  25. 25.
    Stöckle R, Setz P, Deckert V, Lippert T, Wokaun A, Zenobi R (2001) Anal Chem 73:1399–1402CrossRefGoogle Scholar
  26. 26.
    Setz PD, Schmitz TA, Zenobi R (2006) Rev Sci Instrum 77:9CrossRefGoogle Scholar
  27. 27.
    Schmitz TA, Gamez G, Setz PD, Zhu L, Zenobi R (2008) Anal Chem 80:6537–6544CrossRefGoogle Scholar
  28. 28.
    Georgiou S, Koubenakis A (2003) Chem Rev 103:349–393CrossRefGoogle Scholar
  29. 29.
    Handschuh M, Nettesheim S, Zenobi R (1999) Appl Surf Sci 137:125–135CrossRefGoogle Scholar
  30. 30.
    Perez D, Lewis LJ, Lorazo P, Meunier M (2006) Appl Phys Lett 89:141907CrossRefGoogle Scholar
  31. 31.
    Jackson SN, Kim JK, Laboy JL, Murray KK (2006) Rapid Commun Mass Spectrom 20:1299–1304CrossRefGoogle Scholar
  32. 32.
    Apitz I, Vogel A (2005) Appl Phys A Mater Sci Process 81:329–338CrossRefGoogle Scholar
  33. 33.
    Samek O, Kurowski A, Kittel S, Kukhlevsky S, Hergenroder R (2005) Spectrochim Acta B At Spectrosc 60:1225–1229CrossRefGoogle Scholar
  34. 34.
    Garcia CC, Lindner H, Niemax K (2009) J Anal At Spectrom 24:14–26CrossRefGoogle Scholar
  35. 35.
    Hergenröder, R (2006) Spectrochim Acta B At Spectrosc 61:284–300CrossRefGoogle Scholar
  36. 36.
    Hergenröder R (2006) J Anal At Spectrom 21:1016–1026CrossRefGoogle Scholar
  37. 37.
    Koch J, Schlamp S, Rosgen T, Fliegel D, Gunther D (2007) Spectrochim Acta B At Spectrosc 62:20–29CrossRefGoogle Scholar
  38. 38.
    Koch J, Walle M, Schlamp S, Rosgen T, Gunther D (2008) Spectrochim Acta B At Spectrosc 63:37–41Google Scholar
  39. 39.
    Koch J, We M, Dietiker R, Gunther D (2008) Anal Chem 80:915–921CrossRefGoogle Scholar
  40. 40.
    Pisonero J, Gunther D (2008) Mass Spectrom Rev 27:609–623CrossRefGoogle Scholar
  41. 41.
    Fernandez B, Claverie F, Pecheyran C, Donard OFX (2007) Trends Anal Chem 26:951–966CrossRefGoogle Scholar
  42. 42.
    Itina TE, Povarnitsyn ME, Gouriet K, Noel S, Hermann J (2007) Photon Processing in Microelectronics and Photonics VI 6458:U4581Google Scholar
  43. 43.
    Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Chem Rev 103:321–347CrossRefGoogle Scholar
  44. 44.
    Chen ZY, Vertes A (2008) Phys Rev E 77:036316CrossRefGoogle Scholar
  45. 45.
    Hirata T, Miyazaki Z (2007) Anal Chem 79:147–152CrossRefGoogle Scholar
  46. 46.
    Hopp B, Kresz N, Vass C, Toth Z, Smausz T, Ignacz F (2001) Appl Surf Sci 186:298–302Google Scholar
  47. 47.
    Stöckle R, Fokas C, Deckert V, Zenobi R, Sick B, Hecht B, Wild UP (1999) Appl Phys Lett 75:160–162CrossRefGoogle Scholar
  48. 48.
    Arslanov NM (2006) J Opt A Pure Appl Opt 8:338–344CrossRefGoogle Scholar
  49. 49.
    Thiery L, Marini N (2003) Ultramicroscopy 94:49CrossRefGoogle Scholar
  50. 50.
    Conde JC, Lusquinos F, Gonzalez P, Serra J, Leon B, Cultrera L, Guido D, Perrone A (2004) Appl Phys A Mater Sci Process 79:1105–1110Google Scholar
  51. 51.
    Gonzalez JJ, Liu CY, Wen SB, Mao XL, Russo RE (2007) Talanta 73:567–576CrossRefGoogle Scholar
  52. 52.
    Larosa AH, Yakobson BI, Hallen HD (1995) Appl Phys Lett 67:2597–2599CrossRefGoogle Scholar
  53. 53.
    Pique A, Wu P, Ringeisen BR, Bubb DM, Melinger JS, McGill RA, Chrisey DB (2002) Appl Surf Sci 186:408–415CrossRefGoogle Scholar
  54. 54.
    Yang XJ, Tang YX, Yu M, Qin QZ (2000) Thin Solid Films 358:187–190CrossRefGoogle Scholar
  55. 55.
    Dickenson NE, Erickson ES, Mooren OL, Dunn RC (2007) Rev Sci Instrum 78:053712CrossRefGoogle Scholar
  56. 56.
    Cultrera L, Zeifman MI, Perrone A (2007) Appl Surf Sci 253:6322–6325CrossRefGoogle Scholar
  57. 57.
    Aksouh F, Chaurand P, Deprun C, Dellanegra S, Hoyes J, Lebeyec Y, Pinho RR (1995) Rapid Commun Mass Spectrom 9:515–518CrossRefGoogle Scholar
  58. 58.
    Anisimov SI, Bäuerle D, Lukyanchuk BS (1993) Phys Rev B 48:12076–12081CrossRefGoogle Scholar
  59. 59.
    Ayala E, Vera CC, Hakansson P (1999) Rapid Commun Mass Spectrom 13:792–797CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Liang Zhu
    • 1
  • Gerardo Gamez
    • 1
  • Thomas A. Schmitz
    • 1
  • Frank Krumeich
    • 2
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland
  2. 2.Laboratory of Inorganic ChemistryETH ZürichZürichSwitzerland

Personalised recommendations