Analytical and Bioanalytical Chemistry

, Volume 395, Issue 2, pp 337–348 | Cite as

Passive standoff detection of RDX residues on metal surfaces via infrared hyperspectral imaging

  • Thomas A. Blake
  • James F. Kelly
  • Neal B. Gallagher
  • Paul L. Gassman
  • Timothy J. Johnson
Original Paper

Abstract

Hyperspectral images of galvanized steel plates, each containing a stain of cyclotrimethylenetrinitramine (RDX), were recorded using a commercial long-wave infrared imaging spectrometer. Demonstrations of passive RDX chemical detection at areal dosages between 16 and 90 µg/cm2 were carried out over practical standoff ranges between 14 and 50 m. Anomaly and target detection algorithms were applied to the images to determine the effect of areal dosage and sensing distance on detection performance for target RDX. The anomaly detection algorithms included principal component analysis, maximum autocorrelation factors, and principal autocorrelation factors. Maximum difference factors and principal difference factors are novel multivariate edge detection techniques that were examined for their utility in detection of the RDX stains in the images. A target detection algorithm based on generalized least squares was applied to the images, as well, to see if the algorithm can identify the compound in the stains on the plates using laboratory reflection spectra of RDX, cyclotetramethylenetetranitramine (HMX), and 2,4,6-trinitrotoluene (TNT) as the target spectra. The algorithm could easily distinguish between the nitroaromatic (TNT) compound and the nitramine (RDX, HMX) compounds, and, though the distinction between RDX and HMX was less clear, the mean weighted residuals identified RDX as the stain on the plate. Improvements that can be made in this detection technique are discussed in detail. As expected, it was found that detection was best for short distances and higher areal dosages. However, the target was easily detected at all distances and areal dosages used in this study.

Keywords

Standoff detection Infrared hyperspectral imaging RDX HMX TNT Anomaly detection Target detection Principal component analysis Maximum autocorrelation factors Principal autocorrelation factors Generalized least squares 

Supplementary material

216_2009_2907_MOESM1_ESM.pdf (1.9 mb)
ESM 1(PDF 1906 kb)

References

  1. 1.
    Yinon J (2002) Trends Anal Chem 21:292–301CrossRefGoogle Scholar
  2. 2.
    Yinon J (ed) (2007) Counterterrorist detection techniques of explosives. Elsevier, New YorkGoogle Scholar
  3. 3.
    National Research Council (2004) Existing and potential standoff explosives detection techniques. The National Academies Press, WashingtonGoogle Scholar
  4. 4.
    Ray MD, Sedlacek AJ, Wu M (2000) Rev Sci Instrum 71:3485–3489CrossRefGoogle Scholar
  5. 5.
    Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG (2005) Appl Spectrosc 59:769–775CrossRefGoogle Scholar
  6. 6.
    Blanco A, Pacheco-Londono LC, Pena-Quevedo AJ, Hernandez-Rivera SP (2006) Proc SPIE 6217:621737CrossRefGoogle Scholar
  7. 7.
    Van Neste CW, Senesac LR, Yi D, Thundat T (2008) Appl Phys Lett 92:134102CrossRefGoogle Scholar
  8. 8.
    Van Neste CW, Senesac LR, Yi D, Thundat T (2008) Appl Phys Lett 92:234102CrossRefGoogle Scholar
  9. 9.
    De Lucia FC Jr, Gottfried JL, Munson CA, Miziolek AW (2008) Appl Opt 47:G112–G121CrossRefGoogle Scholar
  10. 10.
    Pearson GN, Harris M, Willetts DV, Tapster PR, Roberts PJ (1997) Appl Opt 36:2713–2720CrossRefGoogle Scholar
  11. 11.
    Schollhorn C, Fuller AM, Gratier J, Hummel RE (2007) Appl Opt 46:6232–6236CrossRefGoogle Scholar
  12. 12.
    Schultz JF, Taubman MS, Harper WW, Williams RM, Myers TL, Cannon BD, Sheen DM, Anheier NC, Allen PJ, Sundaram SK, Johnson BR, Aker PM, Wu MC, Lau EK (2003) Proc SPIE 4999:1–18CrossRefGoogle Scholar
  13. 13.
    Steinfeld JI, Wormhoudt J (1998) Annual Rev Phys Chem 49:203–232CrossRefGoogle Scholar
  14. 14.
    Thériault J-M, Puckrin E, Hancock J, Lecavalier P, Lepage CJ, Jensen JO (2004) Appl Opt 43:5870–5885CrossRefGoogle Scholar
  15. 15.
    Farley V, Vallieres A, Chamberland M, Villemaire A, Legault JF (2006) Proc SPIE 6398:63980TCrossRefGoogle Scholar
  16. 16.
    Sharpe SW, Johnson TJ, Sams RL, Chu PM, Rhoderick GC, Johnson PA (2004) Appl Spectr 58:1452–1461CrossRefGoogle Scholar
  17. 17.
    Johnson TJ, Sams RL, Blake TA, Sharpe SW, Chu PM (2002) Appl Opt 41:2831–2839CrossRefGoogle Scholar
  18. 18.
    Farley V, Chamberland M, Vallieres A, Villemaire A, Legault J-F (2006) Proc SPIE 6206:62062ACrossRefGoogle Scholar
  19. 19.
    Johnson TJ, Roberts BA, Kelly JF (2004) Appl Opt 43:638–650CrossRefGoogle Scholar
  20. 20.
    Jackson JE (1991) A user’s guide to principal components. Wiley, New YorkCrossRefGoogle Scholar
  21. 21.
    Green AA, Berman M, Switzer P, Craig MD (1988) IEEE Trans Geosci Remote Sens 26:65–74CrossRefGoogle Scholar
  22. 22.
    Martens H, Næs T (1989) Univariate calibration. Wiley, New YorkGoogle Scholar
  23. 23.
    Turin GL (1960) IRE Trans Inform Theory 6:311–329CrossRefGoogle Scholar
  24. 24.
    Burr T, Hengartner N (2006) Sensors 6:1721–1750CrossRefGoogle Scholar
  25. 25.
    Grahn HF, Geladi P (eds) (2007) Techniques and applications of hyperspectral image analysis. Wiley, New YorkGoogle Scholar
  26. 26.
    Savitzky A, Golay MJE (1964) Anal Chem 36:1627–1639CrossRefGoogle Scholar
  27. 27.
    Boyd RW (1983) Radiometry and the detection of optical radiation. Wiley, New YorkGoogle Scholar
  28. 28.
    Scharlemann ET (2003) Proc SPIE 5154:126–137CrossRefGoogle Scholar
  29. 29.
    Warren DW, Hackwell JA, Gutierrez DJ (1997) Opt Eng 36(4):1174–1182CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Thomas A. Blake
    • 1
  • James F. Kelly
    • 1
  • Neal B. Gallagher
    • 2
  • Paul L. Gassman
    • 1
  • Timothy J. Johnson
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Eigenvector Research Inc.MansonUSA

Personalised recommendations