Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 8, pp 2087–2094 | Cite as

Microextraction, capillary electrophoresis, and mass spectrometry for forensic analysis of azo and methine basic dyes from acrylic fibers

  • Amy R. Stefan
  • Christopher R. Dockery
  • Brittany M. Baguley
  • Brandi C. Vann
  • Alexander A. Nieuwland
  • James E. Hendrix
  • Stephen L. MorganEmail author
Original Paper

Abstract

Designed experiments based on a simplex mixture design were employed to explore the effects of three solvent components (water, formic acid, and aqueous acetic acid), extraction time, and extraction temperature for the automated microextraction of basic (cationic) dyes from acrylic fibers. Extractions were conducted by an automated liquid handling system, and dye extraction was evaluated using a UV/visible microplate reader. Highest extraction efficiency for two subclasses of basic dyes (methine and azo) from acrylic fibers was achieved with an extraction solvent containing 88% formic acid/12% water. Cationic dyes were analyzed by capillary electrophoresis using a 45 mM ammonium acetate buffer in acetonitrile–water at pH 4.7. The utility of microextraction combined with capillary electrophoresis–mass spectrometry for analysis of extracts from trace fibers was demonstrated by the detection and characterization of three basic dyes extracted from a 2-mm length of single acrylic fiber.

Keywords

Forensic analysis Acrylic fibers Extraction of basic dyes Capillary electrophoresis 

Notes

Acknowledgments

This research was supported under a contract award from the Counterterrorism and Forensic Science Research unit of the Federal Bureau of Investigation’s Laboratory Division. Points of view in this document are those of the authors and do not necessarily represent the official position of the Federal Bureau of Investigation. Portions of this work were presented at the FBI Trace Evidence Symposium (Clearwater, FL, USA) in August 2007.

References

  1. 1.
    Roux C, Chable J, Margot P (1996) Sci Justice 36:143–151CrossRefGoogle Scholar
  2. 2.
    Brüschweiler W, Grieve MC (1997) Sci Justice 37:85–89CrossRefGoogle Scholar
  3. 3.
    Akulova V, Vasiliauskiené D, Talaliené D (2002) Sci Justice 42:165–171CrossRefGoogle Scholar
  4. 4.
    Palmer R, Oliver S (2004) Sci Justice 44:83–88CrossRefGoogle Scholar
  5. 5.
    Wiggins K, Drummond P, Champod TH (2004) Sci Justice 44:141–148CrossRefGoogle Scholar
  6. 6.
    Palenik SJ (1999) In: Robertson J, Grieve M (eds) Forensic examination of fibres, 2nd edn. CRC, Boca Raton, pp 153–177Google Scholar
  7. 7.
    Stoeffler SF (1996) J Forensic Sci 41:297–299Google Scholar
  8. 8.
    Needles HF (1986) Textile fibers, dyes, finishes, and processes. Noyes, Park RidgeGoogle Scholar
  9. 9.
    David SK, Pailthorpe MT (1999) In: Robertson J, Grieve M (eds) Forensic examination of fibres, 2nd edn. CRC, Boca Raton, pp 1–13Google Scholar
  10. 10.
    Shore J (2002) Colorants and auxiliaries, vol 1, 2nd edn. Society of Dyers and Colourists, West YorkshireGoogle Scholar
  11. 11.
    Trotman ER (1964) Dyeing and chemical technology of textile fibres. Griffin, LondonGoogle Scholar
  12. 12.
    Wiggins KG, Cook R, Turner YJ (1988) J Forensic Sci 33:998–1007Google Scholar
  13. 13.
    Beattie IB, Dudley RJ, Smalldon KW (1979) J Soc Dyers Col 95:295–302Google Scholar
  14. 14.
    Beattie IB, Roberts HL, Dudley RJ (1981) Forensic Sci Int 17:57–69CrossRefGoogle Scholar
  15. 15.
    Petrick LM, Wilson TA, Fawcett WR (2006) J Forensic Sci 51:771–779CrossRefGoogle Scholar
  16. 16.
    Home JM, Dudley RJ (1981) J Soc Dyers Col 97:17–19Google Scholar
  17. 17.
    Macrae R, Smalldon KW (1979) J Forensic Sci 24:109–116Google Scholar
  18. 18.
    Roux C, Margot P (1997) Sci Justice 37:25–30CrossRefGoogle Scholar
  19. 19.
    Watt R, Roux C, Robertson J (2005) Sci Justice 45:75–83CrossRefGoogle Scholar
  20. 20.
    Yinon J, Saar J (1991) J Chromatogr A 586:73–84CrossRefGoogle Scholar
  21. 21.
    Xu X, Leijenhorst H, Van den Hoven P, De Koeijer JA, Logtenberg H (2001) Sci Justice 41:93–105CrossRefGoogle Scholar
  22. 22.
    Tuinman AA, Lewis LA, Lewis SA (2003) Anal Chem 75:2753–2760CrossRefGoogle Scholar
  23. 23.
    Huang M, Yinon J, Sigman ME (2004) J. Forensic Sci 49:238–249Google Scholar
  24. 24.
    Huang M, Russo R, Fookes BG, Sigman ME (2005) J Forensic Sci 50:526–534Google Scholar
  25. 25.
    Smith W (2005) Experimental design for formulation. Cambridge University Press, New YorkGoogle Scholar
  26. 26.
    Deming SN, Morgan SL (1993) Experimental design: a chemometric approach, 2nd edn. Elsevier Science, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Amy R. Stefan
    • 1
    • 2
  • Christopher R. Dockery
    • 1
    • 3
  • Brittany M. Baguley
    • 1
    • 4
  • Brandi C. Vann
    • 1
  • Alexander A. Nieuwland
    • 1
    • 5
  • James E. Hendrix
    • 1
  • Stephen L. Morgan
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA
  2. 2.Polymathic Analytical LabsOrangeburgUSA
  3. 3.Department of Chemistry & BiochemistryKennesaw State UniversityKennesawUSA
  4. 4.Washoe Co. Sheriff Forensic Science DivisionRenoUSA
  5. 5.VoridianColumbiaUSA

Personalised recommendations