Analytical and Bioanalytical Chemistry

, Volume 395, Issue 4, pp 1009–1016 | Cite as

Traceability of sulfonamide antibiotic treatment by immunochemical analysis of farm animal hair samples

  • Javier Adrian
  • Marta Gratacós-Cubarsí
  • Francisco Sánchez-Baeza
  • Jose-Antonio Garcia Regueiro
  • Massimo Castellari
  • M.-Pilar Marco
Original Paper


The use of hair to trace use of unauthorized substances, therapeutic agents, or their misuse is becoming very attractive since residues can be detected for a long time after treatment. For this purpose, an indirect enzyme-linked immunosorbent assay (ELISA) has been evaluated for its capability to trace sulfonamide antibiotic treatment by analyzing cattle and pig hair samples. Pigmented and nonpigmented hair samples from control and sulfamethazine (SMZ)-treated pigs and calves were collected, extracted under different alkaline conditions, and analyzed by ELISA after just diluting the extracts with the assay buffer. Data analysis following the European recommendations for screening methods demonstrates that the ELISA can detect SMZ in hair samples with a limit of detection (90% of the zero dose (IC90)) between 30 and 75 ng g−1. The same samples have been analyzed by HPLC after a dual solid-phase extraction. The ELISA results matched very well those obtained by the chromatographic method, demonstrating that the immunochemical method can be used as a screening tool to trace animal treatments. Between the benefits of this method are the possibility to directly analyze hair extracts with sufficient detectability and its high-throughput capability. Preliminary validation data are reported using an experimental approach inspired on the Commission Decision 2002/657/EC criteria for screening methods.


Sulfonamide antibiotics Sulfamethazine Hair analysis ELISA Immunoassay HPLC-DAD Treatment traceability 



This work has been supported by the Ministry of Science and Technology (Contract numbers AGL2008-05578-C05-01/03 and NAN2004-09195-C04-04) and by the European Community (KBBE2007- 211326). The AMR group is a Grup de Recerca de la Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació la Generalitat de Catalunya (expedient 2005SGR 00207).


  1. 1.
    Cromwell GL (2002) Anim Biotechnol 13:7–27CrossRefGoogle Scholar
  2. 2.
    Gaskins HR, Collier CT, Anderson DB (2002) Anim Biotechnol 13:29–42CrossRefGoogle Scholar
  3. 3.
    Dunnett M, Lees P (2004) Chromatographia 59:S69–S78CrossRefGoogle Scholar
  4. 4.
    Gratacos-Cubarsi M, Castellari M, Garcia-Regueiro JA (2006) J Chromatogr B 832:121–126CrossRefGoogle Scholar
  5. 5.
    Stolker AAM, Brinkman UAT (2005) J Chromatogr 1067:15–53CrossRefGoogle Scholar
  6. 6.
    Stolker AAM, Zuidema T, Nielen MWF, Nielen MWF (2007) TrAC Trends Anal Chem 26:967–979CrossRefGoogle Scholar
  7. 7.
    Gaillard Y, Pépin G (1999) J Chromatogr B, Biomed Sci Appl 733:231–246CrossRefGoogle Scholar
  8. 8.
    Tagliaro F, Smith FP, De Battisti Z, Manetto G, Marigo M (1997) J Chromatogr B, Biomed Sci Appl 689:261–271CrossRefGoogle Scholar
  9. 9.
    Font H, Adrian J, Galve R, Esevez MC, Castellari M, Gratacos-Cubarsi M, Sanchez-Baeza F, Marcot MP (2008) J Agric Food Chem 56:736–743CrossRefGoogle Scholar
  10. 10.
    Cirimele V, Etienne S, Villain M, Ludes B, Kintz P (2004) Forensic Sci Int 143:153–156CrossRefGoogle Scholar
  11. 11.
    Cooper G (2005) Clin Chim Acta 355:S424–S424Google Scholar
  12. 12.
    Cooper G, Wilson L, Reid C, Baldwin D, Hand C, Spiehler V (2003) J Anal Toxicol 27:581–586Google Scholar
  13. 13.
    Cooper G, Wilson L, Reid C, Baldwin D, Hand C, Spiehler V (2005) J Anal Toxicol 29:678–681Google Scholar
  14. 14.
    Han EY, Miller E, Lee J, Park Y, Lim M, Chung HS, Wylie FM, Oliver JS (2006) J Anal Toxicol 30:380–385Google Scholar
  15. 15.
    Lachenmeier K, Musshoff F, Madea B (2006) Forensic Sci Int 159:189–199CrossRefGoogle Scholar
  16. 16.
    Miller EI, Wylie FM, Oliver JS (2006) J Anal Toxicol 30:441–448Google Scholar
  17. 17.
    Moore C, Deitermann D, Lewis D, Feeley B, Niedbala RS (1999) J Forensic Sci 44:609–612Google Scholar
  18. 18.
    Pujol M-L, Cirimele V, Tritsch PJ, Villain M, Kintz P (2007) Forensic Sci Int 170:189–192CrossRefGoogle Scholar
  19. 19.
    Adrian J, Font HC, Diserens J-M, Sánchez-Baeza F, Marco MP (2009) J Agric Food Chem 57:385–394CrossRefGoogle Scholar
  20. 20.
    European Commission (200) Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results Official Journal of the European Union, L221, 8–36 (17 August 2002)Google Scholar
  21. 21.
    Gratacos-Cubarsi M (2007) Anal Bioanal Chem 387:1991–1998CrossRefGoogle Scholar
  22. 22.
    Scortichini G, Annunziata L, Haouet MN, Benedetti F, Krusteva I, Galarini R (2005) Anal Chim Acta 535:43–48CrossRefGoogle Scholar
  23. 23.
    Paul V, Steinke K, Meyer HHD (2008) Anal Chim Acta 607:106–113CrossRefGoogle Scholar
  24. 24.
    Dunnett M (2003) Res Vet Sci 75:89–101CrossRefGoogle Scholar
  25. 25.
    Dunnett M, Richardson DW, Lees P (2004) Res Vet Sci 77:143–151CrossRefGoogle Scholar
  26. 26.
    Anielski P (2005) Anal Bioanal Chem 383:903–908CrossRefGoogle Scholar
  27. 27.
    Nielen MWF, Lasaroms JJP, Essers ML, Oosterink JE, Meijer T, Sanders MB, Zuidema T, Stolker AAM (2008) Anal Bioanal Chem 391:199–210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Javier Adrian
    • 1
  • Marta Gratacós-Cubarsí
    • 2
  • Francisco Sánchez-Baeza
    • 1
  • Jose-Antonio Garcia Regueiro
    • 2
  • Massimo Castellari
    • 2
  • M.-Pilar Marco
    • 1
  1. 1.Applied Molecular Receptors Group (AMRg), IQAC-CSICNetworking Research Center on Bioengineering, Biomaterials and NanomedicineBarcelonaSpain
  2. 2.Institute for Food and Agricultural Research and Technology(IRTA) Monells—Food Chemistry UnitGironaSpain

Personalised recommendations