Analytical and Bioanalytical Chemistry

, Volume 394, Issue 7, pp 1797–1801 | Cite as

Surface-enhanced Raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation

  • Elena Bailo
  • Ljiljana Fruk
  • Christof M. Niemeyer
  • Volker Deckert
Original Paper


Surface-enhanced Raman scattering was used as a spectroscopic tool to investigate the changes brought upon cytochrome P450BSß after fatty acid binding. Differences in the spectra of substrate-free and substrate-bound enzyme were observed indicating the potential for this method to be used in the screening of P450 substrates. In particular, the binding characteristics of myristic acid, an inherent substrate, and hydroxylauric acid, a product of fatty acid oxidation, towards P450BSß in the presence of H2O2 were investigated. Specific spectral changes could be assigned to changes in the heme environment only for myristic acid, indicating an occurrence of oxidation process characteristic for the enzymatic substrate.


Surface-enhanced Raman spectroscopy Bioanalytical methods Protein binding 



We gratefully acknowledge financial support through the Federal Ministry of Education and Research (BMBF) grant “Markerfreie Zelldiagnostik mit Nanometerauflösung” (0312032A and 0312032B). This work was supported in part by the Zentrum für Angewandte Chemische Genomik (ZACG), a joint research initiative founded by the European Union and the Ministry of Innovation and Research of the state North Rhine-Westphalia. CMN thanks Max Planck Society for financial support of a Max Planck Fellow research group at the Max Planck Institute of Molecular Physiology, Dortmund. LF was supported by Marie Curie International Incoming Fellowship (project 514582).


  1. 1.
    Moskovits M (1985) Rev Mod Phys 57:783CrossRefGoogle Scholar
  2. 2.
    Xu H, Aizpurua J, Kall M, Apell P (2000) Phys Rev E 62:4318CrossRefGoogle Scholar
  3. 3.
    Itoh T, Kikkawa Y, Biju V, Ishikawa M, Ikehata A, Ozaki Y (2006) J Phys Chem B 110:2153Google Scholar
  4. 4.
    Habuchi S, Cotlet M, Gronheid R, Dirix G, Michiels J, Vanderleyden J, De Schryver FC, Hofkens J (2003) J Am Chem Soc 125:8446CrossRefGoogle Scholar
  5. 5.
    Dieringer JA, McFarland AD, Shah NC et al (2006) Faraday Discuss 132:9CrossRefGoogle Scholar
  6. 6.
    Graham D, Faulds F, Smith WE (2006) Chem Commun (Camb) 4363Google Scholar
  7. 7.
    Hering K, Cialla D, Ackermann K et al (2008) Anal Bioanal Chem 390:113CrossRefGoogle Scholar
  8. 8.
    Stuart DA, Haes AJ, Yonzon CR et al (2005) IEE Proc Nanobiotechnol 152:1CrossRefGoogle Scholar
  9. 9.
    Smith WE (2008) Chem Soc Rev 37:955CrossRefGoogle Scholar
  10. 10.
    Hering KK, Moller R, Fritzsche W et al (2008) Chemphyschem 9:867CrossRefGoogle Scholar
  11. 11.
    Fruk L, Grondin A, Smith WE, et al. (2002) Chem Commun (Camb) 2100Google Scholar
  12. 12.
    Faulds K, Fruk L, Robson DC et al (2006) Faraday Discuss 132:261CrossRefGoogle Scholar
  13. 13.
    Chourpa I, Lei FH, Dubois P et al (2008) Chem Soc Rev 37:993CrossRefGoogle Scholar
  14. 14.
    Sha MY, Xu H, Penn SG et al (2007) Nanomed 2:725CrossRefGoogle Scholar
  15. 15.
    Aroca RF, Alvarez-Puebla RA, Pieczonka N et al (2005) Adv Colloid Interface Sci 116:45Google Scholar
  16. 16.
    Hildebrandt P, Stockburger M (1984) J Phys Chem 88:5935CrossRefGoogle Scholar
  17. 17.
    Lee PC, Meisel D (1982) J Phys Chem 86:3391CrossRefGoogle Scholar
  18. 18.
    Lu L, Randjelovic I, Capek R et al (2005) Chem Mat 17:5731CrossRefGoogle Scholar
  19. 19.
    Vogel E, Kiefer W, Deckert V et al (1998) J Raman Spectrosc 29:693CrossRefGoogle Scholar
  20. 20.
    Yu Q, Guan P, Qin D et al (2008) Nano Letters 8:1923CrossRefGoogle Scholar
  21. 21.
    Stöckle RM, Deckert V, Fokas C et al (2000) Appl Spectrosc 54:1577CrossRefGoogle Scholar
  22. 22.
    Han XX, Kitahama Y, Tanaka Y et al (2008) Anal Chem 80:6567CrossRefGoogle Scholar
  23. 23.
    Ingram A, Byers L, Faulds K et al (2008) J Am Chem Soc 130:11846CrossRefGoogle Scholar
  24. 24.
    Ingram AM, Stirling K, Faulds K et al (2006) Org Biomol Chem 4:2869CrossRefGoogle Scholar
  25. 25.
    Moore BD, Stevenson L, Watt A et al (2004) Nat Biotechnol 22:1133CrossRefGoogle Scholar
  26. 26.
    Dunford HB (1999) Heme peroxidases. Wiley, New YorkGoogle Scholar
  27. 27.
    Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947CrossRefGoogle Scholar
  28. 28.
    Bernhardt R (2006) J Biotechnol 124Google Scholar
  29. 29.
    Guengerich FP (2002) Nat Rev Drug Discov 1:359CrossRefGoogle Scholar
  30. 30.
    Bjerneld EJ, Murty KV, Prikulis J et al (2002) Chemphyschem 3:116CrossRefGoogle Scholar
  31. 31.
    Feis A, Marzocchi MP, Paoli M et al (1994) Biochemistry 33:4577CrossRefGoogle Scholar
  32. 32.
    Murgida DH, Hildebrandt P (2004) Acc Chem Res 37:854CrossRefGoogle Scholar
  33. 33.
    Macdonald IDG, Munro AW, Smith WE (1998) Biophys J 74:3241CrossRefGoogle Scholar
  34. 34.
    Gandubert VJ, Torres E, Niemeyer CM (2008) J Mater Chem 18:3824CrossRefGoogle Scholar
  35. 35.
    Matsunaga I, Ueda A, Sumimoto T et al (2001) Arch Biochem Biophys 394:45CrossRefGoogle Scholar
  36. 36.
    Matsunaga I, Sumimoto T, Ueda A et al (2000) Lipids 35:365CrossRefGoogle Scholar
  37. 37.
    Haines DC, Tomchick DR, Machius M et al (2001) Biochemistry 40:13456CrossRefGoogle Scholar
  38. 38.
    Lee D-S, Yamada A, Sugimoto H et al (2003) J Biol Chem 278:9761CrossRefGoogle Scholar
  39. 39.
    Meunier B (1992) Chem Rev 92:1411CrossRefGoogle Scholar
  40. 40.
    Iain DGM, Smith WE, Andrew WM (1996) FEBS Lett 396:196CrossRefGoogle Scholar
  41. 41.
    Macdonald IDG, Smith WE (1996) Langmuir 12:706CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for Analytical Sciences (ISAS)DortmundGermany
  2. 2.Technische Universität DortmundBiologisch Chemische MikrostrukturtechnikDortmundGermany
  3. 3.Universität KarlsruheCentre for Functional NanostructuresKarlsruheGermany
  4. 4.Technische Universität DortmundPhysikalische ChemieDortmundGermany

Personalised recommendations