Analytical and Bioanalytical Chemistry

, Volume 394, Issue 5, pp 1399–1411

Solid-phase microextraction gas chromatography-mass spectrometry determination of fragrance allergens in baby bathwater

  • J. Pablo Lamas
  • Lucia Sanchez-Prado
  • Carmen Garcia-Jares
  • Maria Llompart
PAPER IN FOREFRONT

Abstract

A method based on solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized for the determination of fragrance allergens in water samples. This is the first study devoted to this family of cosmetic ingredients performed by SPME. The influence of parameters such as fibre coating, extraction and desorption temperatures, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mixed-level factorial design, which allowed the study of the main effects as well as two-factor interactions. Excluding desorption temperature, the other parameters were, in general, very important for the achievement of high response. The final procedure was based on headspace sampling at 100 °C, using polydimethylsiloxane/divinylbenzene fibres. The method showed good linearity and precision for all compounds, with detection limits ranging from 0.001 to 0.3 ng mL−1. Reliability was demonstrated through the evaluation of the recoveries in different real water samples, including baby bathwater and swimming pool water. The absence of matrix effects allowed the use of external standard calibration to quantify the target compounds in the samples. The proposed procedure was applied to the determination of allergens in several real samples. All the target compounds were found in the samples, and, in some cases, at quite high concentrations. The presence and the levels of these chemicals in baby bathwater should be a matter of concern.

Baby exposure to fragrance allergens and other cosmetic ingredients through the daily bath

Keywords

Fragrance allergens Allergens Cosmetics Personal care products Solid-phase microextraction Water analysis Multifactor optimization Factorial design 

References

  1. 1.
    Daughton CG, Ternes TA (1999) Environ Health Perspect 107(S6):907–938CrossRefGoogle Scholar
  2. 2.
    Daughton CG, Jones-Lepp TL (eds) (2001) Pharmaceuticals and personal care products in the environment. ACS symposium series 791. Oxford University Press, WashingtonGoogle Scholar
  3. 3.
    Grandjean P, Bellinger D, Bergman A, Cordier S, Davey-Smith G, Eskenazi B, Gee D, Gray K, Hanson M, van den Hazel P, Heindel JJ, Heinzow B, Hertz-Picciotto I, Hu H, Huang TT-K, Jensen TK, Landrigan PJ, McMillen IC, Murata K, Ritz B, Schoeters G, Skakkebaek NE, Skerfving S, Weihe P (2008) Basic Clin Pharmacol Toxicol 102(2):73–75Google Scholar
  4. 4.
    Women’s Environmental Network (2009) WEN. http://www.wen.org.uk. Accessed 14 Feb 2009Google Scholar
  5. 5.
    European Commission (2008) Council Directive of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products (76/768/EEC) (OJ L 262, 27.9.1976, p. 169) consolidated version of 24/04/2008. European Commission, Brussels.Google Scholar
  6. 6.
    Gagliardi L, Dorato S (2007) In: Salvador A, Chisvert A (eds) Analysis of cosmetic products. Elsevier, Amsterdam, chap 1Google Scholar
  7. 7.
    Grandjean P, Landrigan PJ (2006) Lancet 368:2167–2178CrossRefGoogle Scholar
  8. 8.
    Cork MJ, Robinson DA, Vasilopoulos Y, Ferguson A, Moustafa M, MacGowan A, Duff GW, Ward SJ, Tazi-Ahnini R (2006) J Allergy Clin Immunol 118(1):3–21CrossRefGoogle Scholar
  9. 9.
    The Guardian (2004) Throw out the bath water? http://www.guardian.co.uk/chemicalworld/story/0,14534,1210214,00.html. Accessed 21 Feb 2009.
  10. 10.
    Scientific Committee on Cosmetic Products and Non-Food Products (1999) Fragrance allergy in consumers, SCCNFP/0017/98 final, December 1999. European Commission, BrusselsGoogle Scholar
  11. 11.
  12. 12.
    Uehara T, Kiyosawa N, Shimizu T, Omura K, Hirode M, Imazawa T, Mizukawa Y, Ono A, Miyagishima T, Nagao T, Urushidani T (2008) Hum Exp Toxicol 27(1):23–35CrossRefGoogle Scholar
  13. 13.
    Johnson JD, Ryan MJ, Toft JD II, Graves SW, Hejtmancik MR, Cunningham ML, Herbert R, Abdo KM (2000) J Agric Food Chem 48:3620–3632CrossRefGoogle Scholar
  14. 14.
    Rastogi SC, Johansen JD, Menne T, Frosch P, Bruze M, Andersen KE, Lepoittevin JP, Wakelin S, White IR (1999) Contact Dermatitis 41(2):84–88Google Scholar
  15. 15.
    Leijs H, Broekhans J, van Pelt L, Mussinan C (2005) J Agric Food Chem 53(14):5487–5491CrossRefGoogle Scholar
  16. 16.
    Bassereau M, Chaintreau A, Duperrex S, Joulain D, Leijs H, Loesing G, Owen N, Sherlock A, Schippa C, Thorel P-J, Vey M (2007) J Agric Food Chem 55(1):25–31CrossRefGoogle Scholar
  17. 17.
    Niederer M, Bollhalder R, Hohl C (2006) J Chromatogr A 1132(1–2):109–116CrossRefGoogle Scholar
  18. 18.
    Dunn MS, Vulic N, Shellie RA, Whitehead S, Morrison P, Marriott PJ (2006) J Chromatogr A 1130(1):122–129CrossRefGoogle Scholar
  19. 19.
    Mondello L, Casilli A, Tranchida PQ, Sciarrone D, Dugo P, Dugo G (2008) LC-GC Eur 21(3):130–133Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. Pablo Lamas
    • 1
  • Lucia Sanchez-Prado
    • 1
  • Carmen Garcia-Jares
    • 1
  • Maria Llompart
    • 1
  1. 1.Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, Instituto de Investigacion y Analisis Alimentario, Campus SurUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations