Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 7, pp 1787–1795 | Cite as

Tip-enhanced near-field optical microscopy of carbon nanotubes

  • A. HartschuhEmail author
  • H. Qian
  • C. Georgi
  • M. Böhmler
  • L. Novotny
Review

Abstract

We review recent experimental studies on single-walled carbon nanotubes on substrates using tip-enhanced near-field optical microscopy (TENOM). High-resolution optical and topographic imaging with sub 15 nm spatial resolution is shown to provide novel insights into the spectroscopic properties of these nanoscale materials. In the case of semiconducting nanotubes, the simultaneous observation of Raman scattering and photoluminescence (PL) is possible, enabling a direct correlation between vibrational and electronic properties on the nanoscale. So far, applications of TENOM have focused on the spectroscopy of localized phonon modes, local band energy renormalizations induced by charge carrier doping, the environmental sensitivity of nanotube PL, and inter-nanotube energy transfer. At the end of this review we discuss the remaining limitations and challenges in this field.

Figure

Tip-enhanced Raman scattering and photoluminescence spectroscopy with sub 15 nm spatial resolution provides novel insights into the electronic and vibronic properties of single-walled carbon nanotubes.

Keywords

Near-field optical microscopy TERS Carbon nanotubes 

Notes

Acknowledgements

We thank Nicolai Hartmann and Tobias Gokus for samples and experimental support. Financial support from the German Science Foundation DFG through grant HA4405/3-1 and the Nanosystems Initiative Munich (NIM) is gratefully acknowledged.

References

  1. 1.
    Dyba M, Hell S (2002) Phys Rev Lett 88:163901–163904CrossRefGoogle Scholar
  2. 2.
    Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell S, Buchner E, Heckmann M, Sigrist SJ (2006) Science 312:1051–1054CrossRefGoogle Scholar
  3. 3.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Science 313:1642–1645CrossRefGoogle Scholar
  4. 4.
    Rust MJ, Bates M, Zhuang X (2006) Nature Methods 3:793–796CrossRefGoogle Scholar
  5. 5.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Cognet L, Tsyboulski DA, Rocha JDR, Doyle CD, Tour JM, Weisman RB (2008) Science 316:1465–1468CrossRefGoogle Scholar
  7. 7.
    Wessel J (1985) J Opt Soc Am B 2:1538–1541CrossRefGoogle Scholar
  8. 8.
    Pohl DW, Denk W, Lanz M (1984) Appl Phys Lett 44:651–653CrossRefGoogle Scholar
  9. 9.
    Betzig E, Trautman JK (1992) Science 257:189–195CrossRefGoogle Scholar
  10. 10.
    Hartschuh A (2008) Angew Chem Int Ed 47:8178–8198CrossRefGoogle Scholar
  11. 11.
    Kawata S, Shalaev VM (eds)(2007) Tip enhancement (Advances in nano-optics and nano-photonics). Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Purcell EM (1946) Phys Rev 69:681CrossRefGoogle Scholar
  13. 13.
    Thomas M, Carminati R, Arias-Gonzalez JR, Greffet JJ (2004) Appl Phys Lett 85:3863–3865CrossRefGoogle Scholar
  14. 14.
    Hartschuh A, Qian H, Meixner AJ, Anderson N, Novotny L (2005) Nano Lett 5:2310–2313CrossRefGoogle Scholar
  15. 15.
    Aslan K, Gryczynski I, Malicka J, Matveea E, Lakowicz JR, Geddes CD (2005) Anal Biotechnol 16:55–62CrossRefGoogle Scholar
  16. 16.
    Novotny L, Sánchez EJ, Xie XS (1998) Ultramicroscopy 71:21–29CrossRefGoogle Scholar
  17. 17.
    Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G (2000) Opt Comm 179:1–7CrossRefGoogle Scholar
  18. 18.
    Georgi C, Hartmann N, Gokus T, Green AA, Hersam MC, Hartschuh A (2008) Chem Phys Chem 9:1460–1463Google Scholar
  19. 19.
    Jorio A, Dresselhaus MS, Dresselhaus G (eds)(2008) Carbon nanotubes (Topics in Applied Physics, vol 111). Springer, BerlinGoogle Scholar
  20. 20.
    Tan PH, Rozhin AG, Hu P, Scardaci V, Milne WI, Ferrari AC (2007) Phys Rev Lett 99:137402–137404CrossRefGoogle Scholar
  21. 21.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Nature Nanotechnol 1:60–65CrossRefGoogle Scholar
  22. 22.
    Avouris P, Chen J (2006) Mat Today 9:46–54Google Scholar
  23. 23.
    Hartschuh A, Pedrosa HN, Novotny L, Krauss TD (2003) Science 301:1354–1356CrossRefGoogle Scholar
  24. 24.
    Maciel IO, Anderson N, Pimenta MA, Hartschuh A, Qian H, Terrones M, Terrones H, Campos-Delgado J, Rao AM, Novotny L, Jorio A (2008) Nature Mat 7:878CrossRefGoogle Scholar
  25. 25.
    Das A, Pisana S, Piscanec S, Chakraborty B, Saha SK, Waghmare UV, Yiang R, Krishnamurhthy HR, Geim AK, Ferrari AC, Sood AK (2008) Nature Nanotech 3:210–215CrossRefGoogle Scholar
  26. 26.
    Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley R, Weisman RB (2002) Science 298:2361–2366CrossRefGoogle Scholar
  27. 27.
    Wang F, Dukovic G, Brus LE, Heinz TF (2005) Science 308:838–841CrossRefGoogle Scholar
  28. 28.
    Maultzsch J, Pomraenke R, Reich S, Chang E, Prezzi D, Ruini A, Molinari E, Strano MS, Thomsen C, Lienau C (2005) Phys Rev B 72:241402(R)–241405(R)Google Scholar
  29. 29.
    Gokus T, Harutyunyan H, Hennrich F, Araujo PT, Kappes M, Jorio A, Green AA, Hersam MC, Allegrini M, Hartschuh A (2008) Appl Phys Lett 92:153116CrossRefGoogle Scholar
  30. 30.
    Hartschuh A, Sánchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90:095503–195504CrossRefGoogle Scholar
  31. 31.
    Hartschuh A, Anderson N, Novotny L (2003) J Microscopy 210:234–240CrossRefGoogle Scholar
  32. 32.
    Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174–180CrossRefGoogle Scholar
  33. 33.
    Roy D, Jiang W, Welland ME (2006) Faraday Discuss 132:215–225CrossRefGoogle Scholar
  34. 34.
    Kharintsev SS, Hoffmann GG, de With G, Loos J (2007) Nanotechnology 18:315502–315509CrossRefGoogle Scholar
  35. 35.
    Roy D, Wang J, Williams C (2009) J Appl Phys 105:013530CrossRefGoogle Scholar
  36. 36.
    De Vita A, Charlier JC, Blase X, Car R (1999) Appl Phys A 68:283–286CrossRefGoogle Scholar
  37. 37.
    Carroll DL, Redlich P, Ajayan PM, Charlier JC, Blase X, De Vta A, Car R (1997) Phys Rev Lett 78:2811–2814CrossRefGoogle Scholar
  38. 38.
    Rajan A, Strano MS, Heller DA, Hertel T, Schulten K (2008) J Phys Chem B 112:6211–6213CrossRefGoogle Scholar
  39. 39.
    Qian H, Georgi C, Anderson N, Green AA, Hersam MC, Novotny L, Hartschuh A (2008) Phys Stat Sol B 245:2243–2246Google Scholar
  40. 40.
    Anderson N, Hartschuh A, Novotny L (2005) J Am Chem Soc 127:2533–2537CrossRefGoogle Scholar
  41. 41.
    Anderson N, Hartschuh A, Novotny L (2007) Nano Lett 7:577–582CrossRefGoogle Scholar
  42. 42.
    Yano T, Inouye Y, Kawata S (2006) Nano Lett 6:1269–1273CrossRefGoogle Scholar
  43. 43.
    Qian H, Araujo PT, Georgi C, Gokus T, Hartmann N, Green AA, Jorio A, Hersam MC, Novotny L, Hartschuh A (2008) Nano Lett 8:2706–2711CrossRefGoogle Scholar
  44. 44.
    Qian H, Georgi C, Anderson N, Green AA, Hersam MC, Novotny L, Hartschuh A (2008) Nano Lett 8:1363–1367CrossRefGoogle Scholar
  45. 45.
    Steidtner J, Pettinger B (2007) Rev Sci Instrum 78:103104–103108CrossRefGoogle Scholar
  46. 46.
    Novotny L, Beversluis MR, Youngworth KS, Brown TG (2001) Phys Rev Lett 86:5251–5254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. Hartschuh
    • 1
    Email author
  • H. Qian
    • 1
  • C. Georgi
    • 1
  • M. Böhmler
    • 1
  • L. Novotny
    • 2
  1. 1.Chemistry and Biochemistry Department and CeNSLudwig Maximillians University MunichMunichGermany
  2. 2.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations