Analytical and Bioanalytical Chemistry

, Volume 395, Issue 2, pp 411–419 | Cite as

Performance evaluation of a miniature ion mobility spectrometer drift cell for application in hand-held explosives detection ion mobility spectrometers

  • J. S. Babis
  • R. P. Sperline
  • A. K. Knight
  • D. A. Jones
  • C. A. Gresham
  • M. B. Denton
Original Paper

Abstract

The implementation of hand-held ion mobility spectrometers (IMS) requires the development and evaluation of miniature drift cells providing high sensitivity while maintaining reasonable resolution. This manuscript describes the construction of a miniature IMS designed for such an application and its characterization by evaluation of the detection limits and resolution of the system with seven explosive compounds including trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), pentaerythritol tetranitrate (PETN), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), nitroglycerin (NG), 2,4-dinitrotoluene (2,4 DNT), and 2,6-dinitrotoluene (2,6 DNT).

Miniature IMS Assembly

Keywords

Miniature IMS Explosives Capacitive-transimpedance amplifier CTIA 

References

  1. 1.
    Baumbach JI, Eiceman GA (1999) Appl Spectr 53:338A–355ACrossRefGoogle Scholar
  2. 2.
    Miller RA, Eiceman GA, Nazarov EG, King AT (2000) Sens Act B-Chem 67(3):300–306CrossRefGoogle Scholar
  3. 3.
    Teepe M, Kang WJ, Nayer A, Baumbach JI, Schmidt H (2000) Int J Ion Mobility Spectrom 4:173–176Google Scholar
  4. 4.
    Sizov FF, Derkach YP, Kononenko YG, Reva VP (1999) Readout device processing electronics for IR linear and focal plane arraysGoogle Scholar
  5. 5.
    Denton MB (2001) Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, United States, pp 26-30, August 2001, ANYL-170Google Scholar
  6. 6.
    2006 Final Annual Report to the United States Department of Energy, Subcontracts A0334-30141 and A0344677767Google Scholar
  7. 7.
    United States Patent, 7403065Google Scholar
  8. 8.
    Knight AK, Sperline RP, Hieftje GM, Young E, Barinaga CJ, Koppenaal DW, Denton MB (2002) Intern J Mass Spectr 215:131–139CrossRefGoogle Scholar
  9. 9.
    Barnes JHI, Sperline R, Denton MB, Barinaga CJ, Koppenaal D, Young ET, Hieftje GM (2002) Anal Chem 74:5327–5332CrossRefGoogle Scholar
  10. 10.
    Schilling GD, Andrade FJ, Barnes JH, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2006) Anal Chem 78:4319–4325CrossRefGoogle Scholar
  11. 11.
    Barnes JHI, Schilling GD, Hieftje GM, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW (2004) J Amer Soc Mass Spectr 15:769–776CrossRefGoogle Scholar
  12. 12.
    Barnes JHI, Schilling GD, Sperline R, Denton MB, Young ET, Barinaga CJ, Koppenaal DW, Hieftje GM (2004) Anal Chem 76:2531–2536CrossRefGoogle Scholar
  13. 13.
    Sperline RP, Knight AK, Gresham CA, Koppenaal DW, Hieftje GM, Denton MB (2005) Appl Spectr 59:1315–1323CrossRefGoogle Scholar
  14. 14.
    Tyndall AM, Powell CF (1930) Proc Roy Soc London A129:162–180Google Scholar
  15. 15.
    Zverev AI (1967) Handbook of filter synthesis. Wiley, New York, p 71Google Scholar
  16. 16.
    LabView Version 7.1, National Instruments, Inc., FIR Windowed Filter.VI, 7.1 ed., 2006Google Scholar
  17. 17.
    Bruschini C (2001) Subsurf Sens Technol Appl 2:299–336CrossRefGoogle Scholar
  18. 18.
    Ewing RG, Miller CJ (2001) Field Anal Chem Tech 5(5):215–221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. S. Babis
    • 2
  • R. P. Sperline
    • 2
  • A. K. Knight
    • 2
  • D. A. Jones
    • 1
  • C. A. Gresham
    • 1
  • M. B. Denton
    • 2
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA
  2. 2.University of ArizonaTucsonUSA

Personalised recommendations