Analytical and Bioanalytical Chemistry

, Volume 394, Issue 6, pp 1621–1636 | Cite as

Phototransformations of selected pharmaceuticals under low-energy UVA–vis and powerful UVB–UVA irradiations in aqueous solutions—the role of natural dissolved organic chromophoric material

  • J. Peuravuori
  • K. Pihlaja
Original Paper


The kinetics of simulated low-energy daylight (UVA–vis) and powerful combined ultraviolet B and A (UVB–UVA) induced direct and indirect phototransformations of four pharmaceuticals, i.e., ibuprofen, metoprolol, carbamazepine, and warfarin, which were investigated in dilute solutions of pure laboratory and natural humic waters. The results strengthen the essential function of natural chromophores in dissolved organic material (CDOM) as principal photosensitizer toward indirect phototransformations of pharmaceuticals in natural conditions under available low-energy UVA–vis and slight UVB radiations. The results confirmed that organic micropollutants are able to undergo a direct photolysis if their absorbance spectra overlap the spectral range of the available radiation but only if the radiation is strong enough, e.g., ibuprofen is able to undergo only indirect photolysis via different pathways in all realistic conditions. The action of nitrate anions as photosensitizers in the applied conditions proved to be of little importance. High-performance size-exclusion chromatographic experiments verified that the rate constants obtained under the low-energy UVA–vis and powerful UVB–UVA irradiations for the decreased amounts of the two largest molecular size fractions of CDOM were quite close to the rate constants detected for the increased amounts of the next five molecular size fractions with smaller molecular sizes. The decreased contents of the two largest molecular size fractions correlated quite well with the decreased contents of the studied pharmaceuticals under the low-energy UVA–vis irradiation process but somewhat less under the powerful UVB–UVA irradiation. The photochemically induced decomposition of the CDOM aggregates appears to increase the amounts of smaller molecular size fractions and simultaneously produce via CDOM-stimulated radical reactions indirect structural transformations of pharmaceuticals. Apparent quantum yields were estimated for the transformation–degradation of the two largest molecular-size CDOM aggregates under low-energy UVA–vis and powerful UVB–UVA irradiations.


Structural difference between CDOM and pharmaceuticals studies


Pharmaceuticals Phototransformation Sensitizers Natural humic water Molecular mixtures Molecular sizes 



The author wish to thank Leena Vänskä (Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku) for participating in the experimental work.


  1. 1.
    Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Environ Sci Technol 41:8211–8217CrossRefGoogle Scholar
  2. 2.
    Nikolaou A, Meric S, Fatta D (2006) Anal Bioanal Chem 387:1225–1234CrossRefGoogle Scholar
  3. 3.
    Fent K, Anna Weston A, Caminada D (2006) Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  4. 4.
    Jjemba PK (2006) Ecotoxicol Environ Saf 63:113–130CrossRefGoogle Scholar
  5. 5.
    Crane M, Watts C, Boucard T (2006) Sci Total Environ 367:23–41CrossRefGoogle Scholar
  6. 6.
    Dzialowski EM, Turner PK, Brooks BW (2006) Environ Con Tox 50:503–510CrossRefGoogle Scholar
  7. 7.
    Cleuvers M (2005) Chemosphere 59:199–205CrossRefGoogle Scholar
  8. 8.
    Huggett DB, Brooks BW, Peterson B, Foran CM, Schlenk D (2002) Arch Environ Contam Toxicol 43:229–235CrossRefGoogle Scholar
  9. 9.
    Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, Mao CS, Redmon JB, Ternand CL, Sullivan S, Teague JL (2005) Environ Health Perspect 113:1056–1061CrossRefGoogle Scholar
  10. 10.
    Liebig M, Moltmann JF, Knacker Y (2006) Environ Sci Pollut Res 13:110–119CrossRefGoogle Scholar
  11. 11.
    Khetan SK, Collins TJ (2007) Chem Rev 107:2319–2364CrossRefGoogle Scholar
  12. 12.
    Watts C, Maycock D, Fawell J, Crane M, Goslan E (2007) Desk based review of current knowledge on pharmaceuticals in drinking water and estimation of potential levels. Defra Project Code: CSA 7184/WT02046/DW170/2/213. Watts & Crane, LondonGoogle Scholar
  13. 13.
    Vieno N (2007) Occurrence of pharmaceuticals in Finnish sewage treatment plants, surface waters, and their elimination in drinking water treatment processes. Thesis, University of Technology, Tampere, FinlandGoogle Scholar
  14. 14.
    Andreozzi R, Marotta R, Paxéus N (2003) Chemosphere 50:1319–1330CrossRefGoogle Scholar
  15. 15.
    Scheytt T, Mersmann P, Lindstädt R, Heberer T (2005) Chemosphere 60:245–253CrossRefGoogle Scholar
  16. 16.
    Winkler M, Lawrence JR, Neu TR (2001) Wat Res 35:3197–3205CrossRefGoogle Scholar
  17. 17.
    Lam MW, Young CJ, Brain RA, Johnson DJ, Hanson MA, Wilson CJ, Richards SM, Solomon KR, Mabury SA (2004) Environ Toxicol Chem 23:1431–1440CrossRefGoogle Scholar
  18. 18.
    Albini A, Fasani E (1998) Photochemistry of drugs: An overview and practical problems. In Albini A, Fasani E (eds) Drugs: photochemistry and photostability, pp. 1–73. The Royal Society of Chemistry, Cambridge UKGoogle Scholar
  19. 19.
    Tixier C, Singer HP, Oellers S, Müller SR (2003) Environ Sci Technol 37:1061–1068CrossRefGoogle Scholar
  20. 20.
    Boreen AL, Arnold WA, McNeill K (2003) Aquat Sci 65:320–341CrossRefGoogle Scholar
  21. 21.
    Mill T (1999) Chemosphere 38:1379–1390CrossRefGoogle Scholar
  22. 22.
    Mack J, Bolton JR (1999) J Photochem Photobiol A Chem 128:1–13CrossRefGoogle Scholar
  23. 23.
    Frimmel FH (1994) Environ Int 20:373–385CrossRefGoogle Scholar
  24. 24.
    Peuravuori J, Koivikko R, Pihlaja K (2002) Wat Res 36:4552–4562CrossRefGoogle Scholar
  25. 25.
    Bilski P, Burkhart JG, Chignell CF (2003) Aquat Toxicol 65:229–241CrossRefGoogle Scholar
  26. 26.
    Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG (1984) Environ Sci Technol 18:358A–371ACrossRefGoogle Scholar
  27. 27.
    Cooper WJ, Zika RG, Petasne RG, Fisher AM (1989) Sunlight-induced photochemistry of humic substances in natural waters: major reactive species. In Suffet IH, MacCarthy P (eds) Aquatic humic substances—influence on fate and treatment of pollutants, pp. 333–362. ACS, Washington DCGoogle Scholar
  28. 28.
    Frimmel FH (1998) Environ Int 24:559–571CrossRefGoogle Scholar
  29. 29.
    Doll TE, Frimmel FH (2003) Chemosphere 52:1757–1769CrossRefGoogle Scholar
  30. 30.
    Richard C, Canonica S (2005) Aquatic phototransformation of organic contaminants induced by coloured dissolved natural organic matter. In Hutzinger O (ed) The handbook of environmental chemistry, vol. 2, pp. 299–323. Pt. M. Springer, BerlinGoogle Scholar
  31. 31.
    Canonica S, Jans U, Stemmler K, Hoigné J (1995) Environ Sci Technol 29:1822–1831CrossRefGoogle Scholar
  32. 32.
    Manjun Z, Xi Y, Hongshen Y, Lingren K (2007) Front Environ Sci Engin China 1:311–315CrossRefGoogle Scholar
  33. 33.
    Wang W, Zafiriou OC, Chan I-Y, Zepp RG, Blough NW (2007) Environ Sci Technol 41:1601–1607CrossRefGoogle Scholar
  34. 34.
    Garbin JR, Milori DMBP, Simões ML, da Silva WTL, Neto LM (2007) Chemosphere 66:1692–1698CrossRefGoogle Scholar
  35. 35.
    Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671–698CrossRefGoogle Scholar
  36. 36.
    Peuravuori J, Pihlaja K (1997) Anal Chim Acta 337:133–149CrossRefGoogle Scholar
  37. 37.
    OECD (1997) Guidance document on direct phototransformation of chemicals in water. OECD Environmental Health and Safety Publication, Series on testing and assessment, No. 7Google Scholar
  38. 38.
    Chiron S, Minero C, Vione D (2006) Environ Sci Technol 40:5977–5983CrossRefGoogle Scholar
  39. 39.
    Monteiro MIC, Ferreira FN, de Oliveira NMM, Ávila AK (2003) Anal Chim Acta 477:125–129CrossRefGoogle Scholar
  40. 40.
    Scheiner D (1974) Wat Res 8:835–840CrossRefGoogle Scholar
  41. 41.
    Peuravuori J, Pihlaja K (2004) Environ Sci Technol 38:5958–5967CrossRefGoogle Scholar
  42. 42.
    Peuravuori J, Bursáková P, Pihlaja K (2007) Anal Bioanal Chem 389:1559–1568CrossRefGoogle Scholar
  43. 43.
    Seb⊕k A, Vasanits-Zsigrai A, Palkó Gy, Záray Gy, Molnár-Perl I (2008) Talanta 76:642–650CrossRefGoogle Scholar
  44. 44.
    Liu Q-T, Williams HE (2007) Environ Sci Technol 41:803–810CrossRefGoogle Scholar
  45. 45.
    Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA (2003) Aquat Sci 65:342–351CrossRefGoogle Scholar
  46. 46.
    Lam MW, Mabury SA (2005) Aquat Sci 67:177–188CrossRefGoogle Scholar
  47. 47.
    Brezonik PL, Fulkerson-Brekken J (1998) Environ Sci Technol 32:3004–3010CrossRefGoogle Scholar
  48. 48.
    Vaughan PP, Blough NV (1998) Environ Sci Technol 32:2947–2953CrossRefGoogle Scholar
  49. 49.
    Song W, Cooper WJ, Mezyk SP, Greaves J, Peake BM (2008) Environ Sci Technol 42:1256–1261CrossRefGoogle Scholar
  50. 50.
    Castell JV, Gomez-Lechon MJ, Miranda MA, Morera IM (1987) Photochem Photobiol 46:991–996CrossRefGoogle Scholar
  51. 51.
    European Commission (2005) Health & Consumer Protection Directorate-General, Directorate D-Food Safety, Production and distribution chain, D3-Chemicals, Contaminants and Pesticides, Warfarin, SANCO/10434/2004Google Scholar
  52. 52.
    André C, Guyon C, Guillaum YC (2004) J Chrom B 813:295–302CrossRefGoogle Scholar
  53. 53.
    Leifer A (1988) The kinetics of environmental aqueous photochemistry—theory and practice. ACS Professional Reference Book, American Chemical Society, Washington, DCGoogle Scholar
  54. 54.
    Wang W, Tarr MA, Bianchi TS, Engelhaupt E (2000) Aquat Geochem 6:275–292CrossRefGoogle Scholar
  55. 55.
    Schmitt-Kopplin P, Hertkorn N, Schulten H-R, Antonius Kettrup A (1998) Environ Sci Technol 32:2531–2541CrossRefGoogle Scholar
  56. 56.
    Peuravuori J, Pihlaja K (2007) Anal Bioanal Chem 389:475–491CrossRefGoogle Scholar
  57. 57.
    Rodríguez-Zúñiga UF, Milori DMBP, Da Silva WTL, Martin-Neto L, Oliveira LC, Rocha JC (2008) Environ Sci Technol 42:1948–1953CrossRefGoogle Scholar
  58. 58.
    Paul A, Stösser R, Zehl A, Zwirnmann E, Vogt RD, Steinberg CEW (2006) Environ Sci Technol 40:5897–5903CrossRefGoogle Scholar
  59. 59.
    Peuravuori J, Pihlaja K (1998) Anal Chim Acta 364:203–221CrossRefGoogle Scholar
  60. 60.
    Peuravuori J (2005) Environ Sci Technol 39:5541–5549CrossRefGoogle Scholar
  61. 61.
    Hu C, Muller-Karger FE, Zepp RG (2002) Limnol Oceanogr 47:1261–1267Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations