Analytical and Bioanalytical Chemistry

, Volume 395, Issue 2, pp 377–386 | Cite as

Absolute integrated intensities of vapor-phase hydrogen peroxide (H2O2) in the mid-infrared at atmospheric pressure

  • Timothy J. Johnson
  • Robert L. Sams
  • Sarah D. Burton
  • Thomas A. Blake
Original Paper


We report quantitative infrared spectra of vapor-phase hydrogen peroxide (H2O2) with all spectra pressure-broadened to atmospheric pressure. The data were generated by injecting a concentrated solution (83%) of H2O2 into a gently heated disseminator and diluting it with pure N2 carrier gas. The water vapor lines were quantitatively subtracted from the resulting spectra to yield the spectrum of pure H2O2. The results for the ν6 band strength (including hot bands) compare favorably with the results of Klee et al. (J Mol. Spectrosc. 195:154, 1999) as well as with the HITRAN values. The present results are 433 and 467 cm-2 atm−1 (±8 and ±3% as measured at 298 and 323 K, respectively, and reduced to 296 K) for the band strength, matching well the value reported by Klee et al. (S = 467 cm−2 atm−1 at 296 K) for the integrated band. The ν1 + ν5 near-infrared band between 6,900 and 7,200 cm−1 has an integrated intensity S = 26.3 cm−2 atm−1, larger than previously reported values. Other infrared and near-infrared bands and their potential for atmospheric monitoring are discussed.


Infrared Fourier transform infrared Quantitative Band strengths Hydrogen peroxide 



We thank Jean-Michel Régimbal of John Abbott College in Sainte-Anne-de-Bellevue in Montreal for helpful advice. PNNL is operated for the US Department of Energy by the Battelle Memorial Institute under contract DE-AC06-76RLO 1830. This work was supported by the Strategic Environmental Research and Development Program (SERDP) sustainable infrastructure program. The work was also supported by the DOE NA-22 program and we thank both sponsors for their support. The experiments were performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL.


  1. 1.
    Sharpe SW, Johnson TJ, Sams RL, Chu PM, Rhoderick GC, Johnson PA (2004) Appl Spectrosc 58:1452–1461CrossRefGoogle Scholar
  2. 2.
    Rinsland CP, Malathy-Devi V, Blake TA, Sams RL, Sharpe SW, Chiou L (2008) J Quant Spectrosc Radiat Transf 109:2511–2522CrossRefGoogle Scholar
  3. 3.
    Johnson TJ, Roberts BA, Kelly JF (2004) Appl Opt 43:638–650CrossRefGoogle Scholar
  4. 4.
    Kirk RE, Othmer DF, Kroschwitz JI, Howe-Grant M (eds) (2005) Kirk-Othmer encyclopedia of chemical technology, vol 13. Wiley, New YorkGoogle Scholar
  5. 5.
    Davies DD (1974) Can J Chem 52:1405–1414CrossRefGoogle Scholar
  6. 6.
    Connell PS, Wuebbles DJ, Change JS (1985) J Geophys Res 90:10726–10732CrossRefGoogle Scholar
  7. 7.
    Snow JA, Heikes BG, Shen H, O’Sullivan DW, Fried A, Walega J (2007) J Geophys Res. doi: 10.1029/2006JD00746
  8. 8.
    Rinsland CP, Coheur PF, Herbin H, Clerbaux C, Boone C, Bernath P, Chiou LS (2007) J Quant Spectrosc Radiat Transf 107:340–348CrossRefGoogle Scholar
  9. 9.
    von Kuhlmann R, Lawrence MG, Crutzen PJ, Rasch PJ (2003) J Geophys Res 108(D23):4729CrossRefGoogle Scholar
  10. 10.
    Ruey-Rong L, Gorse RA, Sauer MC, Sheffield G (1979) J Phys Chem 83:1803–1804Google Scholar
  11. 11.
    Takacs GA, Howard CJ (1984) J Phys Chem 88:2110–2116CrossRefGoogle Scholar
  12. 12.
    Lee M, Heikes BG, Jacob DJ, Sachse G, Anderson B (1997) J Geophys Res D 102:1301–1309CrossRefGoogle Scholar
  13. 13.
    Kleindienst TE, Shepson PB, Hodges DN, Nero CM, Arnts RR, Dasgupta PK, Hwang H, Kok GL, Lind JA, Lazrus AL, Mackay GI, Mayne LK, Schiff HI (1988) Environ Sci Technol 22:53–61CrossRefGoogle Scholar
  14. 14.
    Staffelbach TA, Kok GL, Heikes BG, McCuilly B, Mackay GI, Karecki DR, Schiff HI (1996) J Geophys Res 101:33–66CrossRefGoogle Scholar
  15. 15.
    Rothman LS, Jacquemart D, Barbe A et al (2005) J Quant Spectrosc Radiat Transf 96:139–204CrossRefGoogle Scholar
  16. 16.
    Johnson TJ, Wienhold FG, Burrows JP, Harris GW (1991) Appl Opt 30:407–413CrossRefGoogle Scholar
  17. 17.
    Sharpe SW, Kelly JF, Hartman JS, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Cho AY (1998) Opt Lett 23:1396–1398CrossRefGoogle Scholar
  18. 18.
    Williams SD, Johnson TJ, Gibbons TP, Kitchens CL (2007) Theor Chem Acc 117:283–290CrossRefGoogle Scholar
  19. 19.
    Easton MF, Mitchell AG, Wynne-Jones WFK (1952) Trans Faraday Soc 48:796–801CrossRefGoogle Scholar
  20. 20.
    Johnson TJ, Sharpe SW, Covert MA (2006) Rev Sci Instrum 77:094103. Erratum in Johnson TJ, Sharpe SW, Covert MA (2007) Rev Sci Instrum 78:019902Google Scholar
  21. 21.
    Foster NS, Thompson SE, Valentine NB, Amonette JE, Johnson TJ (2004) Appl Spectrosc 58:203–211CrossRefGoogle Scholar
  22. 22.
    Johnson TJ, Valentine NB, Sharpe SW (2005) Chem Phys Lett 403:152–155CrossRefGoogle Scholar
  23. 23.
    Johnson TJ, Sams RL, Blake TA, Sharpe SW, Chu PM (2002) Appl Opt 41:2831–2839CrossRefGoogle Scholar
  24. 24.
    Birk M, Hausmann D, Wagner G, Johns JW (1996) Appl Opt 35:2971–2985CrossRefGoogle Scholar
  25. 25.
    Chase DB (1984) Appl Spectrosc 38:491–494CrossRefGoogle Scholar
  26. 26.
    Giguère PA (1950) J Chem Phys 18:88–92CrossRefGoogle Scholar
  27. 27.
    Camy-Peyret C, Flaud J-M, Johns JWC, Noël M (1992) J Mol Spectrosc 155:84–104CrossRefGoogle Scholar
  28. 28.
    Hougen JT (1984) Can J Phys 62:1392–1402Google Scholar
  29. 29.
    Redington RL, Olson WB, Cross PC (1962) J Chem Phys 36:1311–1326CrossRefGoogle Scholar
  30. 30.
    Chackerian C, Sharpe SW, Blake TA (2003) J Quant Spectrosc Radiat Transf 82:429–441CrossRefGoogle Scholar
  31. 31.
    Johnson TJ, Disselkamp RS, Su Y-F, Fellows RJ, Alexander ML, Driver CL (2003) J Phys Chem A 107:6183–6190CrossRefGoogle Scholar
  32. 32.
    May RD (1991) J Quant Spectrosc Radiat Transfer 45:267–272CrossRefGoogle Scholar
  33. 33.
    Hillman JJ, Jennings DE, Olson WB, Goldman A (1986) J Mol Spectrosc 117:46–59CrossRefGoogle Scholar
  34. 34.
    Klee S, Winnewisser M, Perrin A, Flaud J-M (1999) J Mol Spectrosc 195:154–161CrossRefGoogle Scholar
  35. 35.
    Niki H, Maker PD, Savage CM, Breitenbach LP (1980) Chem Phys Lett 73:43–46CrossRefGoogle Scholar
  36. 36.
    Valero FPJ, Goorvitch FS, Bonomo FS, Boese RW (1981) Appl Opt 20:4097–4101CrossRefGoogle Scholar
  37. 37.
    Adams D, Brown GP, Fritz C, Todd TR (1998) Pharm Eng 18:1–11CrossRefGoogle Scholar
  38. 38.
    Corveleyn S, Vandenbossche GMR, Remon JP (1997) Pharm Res 14:294–298CrossRefGoogle Scholar
  39. 39.
    Johnson TJ, Masiello T, Sharpe SW (2006) Atmos Chem Phys 6:2581–2591Google Scholar
  40. 40.
    Hagen CL, Sanders ST (2007) Meas Sci Technol 18:1992–1998CrossRefGoogle Scholar
  41. 41.
    Rogers JD (1984) J Phys Chem 88:526–530CrossRefGoogle Scholar
  42. 42.
    Kjaergaard HG, Goddard JD, Henry BR (1991) J Chem Phys 95:5556–5564CrossRefGoogle Scholar
  43. 43.
    Wehrum WL (1993) Process Saf Prog 12:199–202CrossRefGoogle Scholar
  44. 44.
    Richter D, Fried A, Wert BP, Walega JG, Tittel FK (2002) Appl Phys B 75:281–288CrossRefGoogle Scholar
  45. 45.
    Wert BP, Fried A, Rauenbuehler S, Walega J, Henry B (2003) J Geophys Res 108(12):4350–4362CrossRefGoogle Scholar
  46. 46.
    Werle PW, Mazzinghi P, D’Amato F, De Rosa M, Maurer K, Slemr F (2004) Spectrochim Acta A 60:1685–1705CrossRefGoogle Scholar
  47. 47.
    Johnson TJ, Wienhold FG, Burrows JP, Harris GW, Burkhard H (1991) J Phys Chem 95:6499–6502CrossRefGoogle Scholar
  48. 48.
    Bitter M, Ball SM, Povey IM, Jones RL (2005) Atmos Chem Phys 5:2547–2560CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Timothy J. Johnson
    • 1
  • Robert L. Sams
    • 1
  • Sarah D. Burton
    • 1
  • Thomas A. Blake
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations