Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 3, pp 695–706 | Cite as

Capillary electrophoresis and column chromatography in biomedical chiral amino acid analysis

  • Magdalena C. Waldhier
  • Michael A. Gruber
  • Katja Dettmer
  • Peter J. OefnerEmail author
Trends

Abstract

Free amino acids are typically quantified as the sum of their enantiomers, because in terrestrial organisms they mainly exist in the left-handed form. However, with increasing understanding of the biological significance of right-handed amino acids interest in enantioselective quantification of amino acids has steadily increased. Initially, electrophoretic and chromatographic methods using chiral (pseudo)-stationary phases or chiral eluents were applied to the separation of amino acid enantiomers. Later, derivatization of amino acids prior to chromatography with chiral reagents gained in popularity, because the diastereomers formed can be resolved on conventional reversed-phase columns. Novel multi-interaction chiral columns turned attention back to direct chiral chromatographic methods. Hyphenation to mass spectrometry has increasingly replaced optical detection because of superior selectivity, although this has not obviated the need for baseline resolution of amino acid enantiomers. Despite the progress made, enantioselective separation and quantification of amino acids remains an analytical challenge owing to frequently incomplete resolution of all naturally occurring enantiomers and insufficient sensitivity for the determination of the trace amounts of d-amino acids typically found in biological fluids and tissues.

Chiral GC-MS analysis of heptafluorobutanol/pentafluoropropionanhydride amino acid derivatives on an Rt-gDEXsa column

Keywords

Amino acid enantiomers Chiral separation Capillary electrophoresis Liquid chromatography Gas chromatography Biomedical analysis 

Notes

Acknowledgements

This work was supported by BayGene and the intramural ReForM-C program.

References

  1. 1.
    Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2009) Anal Bioanal Chem 393:445–452CrossRefGoogle Scholar
  2. 2.
    Konno R, Bruckner H, D'Aniello A, Fisher G, Fujii N, Homma H (2007) d-Amino acids: a new frontier in amino acid and protein research—practical methods and protocols. Nova, New YorkGoogle Scholar
  3. 3.
    Nagata Y, Higashi M, Ishii Y, Sano H, Tanigawa M, Nagata K, Noguchi K, Urade M (2006) Life Sci 78:1677–1681CrossRefGoogle Scholar
  4. 4.
    Fuchs S, Berger R, Klomp L, de Koning T (2005) Mol Genet Metab 85:168–180CrossRefGoogle Scholar
  5. 5.
    Nagata Y, Masui R, Akino T (1992) Experientia 48:986–988CrossRefGoogle Scholar
  6. 6.
    Ketting D, Wadman SK, Spaapen LJ, Van der Meer SB, Duran M (1991) Clin Chim Acta 204:79–86CrossRefGoogle Scholar
  7. 7.
    Griffin RC, Moody H, Penkman KEH, Collins MJ (2008) Forensic Sci Int 175:11–16CrossRefGoogle Scholar
  8. 8.
    Han Y, Chen Y (2007) Electrophoresis 28:2765–2770CrossRefGoogle Scholar
  9. 9.
    Lindner W, Böhs B, Seidel V (1995) J Chromatogr A 697:549–560CrossRefGoogle Scholar
  10. 10.
    Ueda T, Kitamura F, Mitchell R, Metcalf T, Kuwana T, Nakamoto A (1991) Anal Chem 63:2979–2981CrossRefGoogle Scholar
  11. 11.
    Terabe S, Miyashita Y, Ishihama Y, Shibata O (1993) J Chromatogr 636:47–55CrossRefGoogle Scholar
  12. 12.
    Otsuka K, Kashihara M, Kawaguchi Y, Koike R, Hisamitsu T, Terabe S (1993) J Chromatogr A 652:253–257CrossRefGoogle Scholar
  13. 13.
    Tran AD, Blanc T, Leopold EJ (1990) J Chromatogr 516:241–249CrossRefGoogle Scholar
  14. 14.
    Schützner W, Caponecchi G, Fanali S, Rizzi A, Kenndler E (1994) Electrophoresis 15:769–773CrossRefGoogle Scholar
  15. 15.
    Lämmerhofer M, Tobler E, Zarbl E, Lindner W, Svec F, Frechet JM (2003) Electrophoresis 24:2986–2999CrossRefGoogle Scholar
  16. 16.
    Roussel C, Favrou A (1995) J Chromatogr A 704:67–74CrossRefGoogle Scholar
  17. 17.
    Hinze W, Riehl T, Armstrong D, DeMond W, Alak A, Ward T (1985) Anal Chem 57:237–242CrossRefGoogle Scholar
  18. 18.
    Pawlowska M, Chen S, Armstrong DW (1993) J Chromatogr 641:257–265CrossRefGoogle Scholar
  19. 19.
    Einarsson S, Josefsson B, Moller P, Sanchez D (1987) Anal Chem 59:1191–1195CrossRefGoogle Scholar
  20. 20.
    Okuma E, Abe H (1994) J Chromatogr B Biomed Appl 660:243–250CrossRefGoogle Scholar
  21. 21.
    Brückner H, Lüpke M (1995) Chromatographia 40:601–606CrossRefGoogle Scholar
  22. 22.
    Ilisz I, Berkecz R, Peter A (2008) J Pharm Biomed Anal 47:1–15CrossRefGoogle Scholar
  23. 23.
    Péter A, Vékes E, Török G (2000) Chromatographia 52:821–826CrossRefGoogle Scholar
  24. 24.
    Kinoshita T (1998) Yakugaku Zasshi 118:31–50CrossRefGoogle Scholar
  25. 25.
    Kleidernigg O, Lindner W (1998) J Chromatogr A 795:251CrossRefGoogle Scholar
  26. 26.
    Marfey P (1984) Carlsberg Res Commun 49:591–596CrossRefGoogle Scholar
  27. 27.
    Harada K, Fujii K, Mayumi T, Hibino Y, Suzuki M, Ikai Y, Oka H (1995) Tetrahedron Lett 36:1515–1518CrossRefGoogle Scholar
  28. 28.
    Brückner H, Langer M, Lüpke M, Westhauser T, Godel H (1995) J Chromatogr A 697:229–245CrossRefGoogle Scholar
  29. 29.
    Rubio-Barroso S, Santos-Delgado M, Martin-Olivar C, Polo-Diez L (2006) J Dairy Sci 89:82–89CrossRefGoogle Scholar
  30. 30.
    Buck R, Krummen K (1984) J Chromatogr 315:279–285CrossRefGoogle Scholar
  31. 31.
    Grant SL, Shulman Y, Tibbo P, Hampson DR, Baker GB (2006) J Chromatogr B Anal Technol Biomed Life Sci 844:278–282CrossRefGoogle Scholar
  32. 32.
    Mandl A, Nicoletti L, Lämmerhofer M, Lindner W (1999) J Chromatogr A 858:1–11CrossRefGoogle Scholar
  33. 33.
    Welch CE (1994) J Chromatogr A 666:3–26CrossRefGoogle Scholar
  34. 34.
    Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, Imai K (1997) Biochim Biophys Acta 1334:214–222CrossRefGoogle Scholar
  35. 35.
    Hamase K, Morikawa A, Ohgusu T, Lindner W, Zaitsu K (2007) J Chromatogr A 1143:105–111CrossRefGoogle Scholar
  36. 36.
    Casal S, Oliveira MB, Ferreira MA (2000) J Chromatogr A 866:221–230CrossRefGoogle Scholar
  37. 37.
    Zahradnickova H, Husek P, Simek P, Hartvich P, Marsalek B, Holoubek I (2007) Anal Bioanal Chem 388:1815–1822CrossRefGoogle Scholar
  38. 38.
    Brückner H, Schieber A (2001) Biomed Chromatogr 15:166–172CrossRefGoogle Scholar
  39. 39.
    Pätzold R, Schieber A, Brückner H (2005) Biomed Chromatogr 19:466–473CrossRefGoogle Scholar
  40. 40.
    Zampolli M, Basaglia G, Dondi F, Sternberg R, Szopa C, Pietrogrande M (2007) J Chromatogr A 1150:162–172CrossRefGoogle Scholar
  41. 41.
    Zampolli M, Meunier D, Sternberg R, Raulin F, Szopa C, Pietrogrande MC, Dondi F (2006) Chirality 18:279–295CrossRefGoogle Scholar
  42. 42.
    Abe I, Fujimoto N, Nakahara T (1994) J Chromatogr A 676:469–473CrossRefGoogle Scholar
  43. 43.
    Schurig V, Juza M, Preschel M, Nicholson G, Bayer E (1999) Enantiomer 4:297–303Google Scholar
  44. 44.
    Levkin PA, Levkina A, Schurig V (2006) Anal Chem 78:5143–5148CrossRefGoogle Scholar
  45. 45.
    Liu DM (1992) J Chromatogr 589:249–256CrossRefGoogle Scholar
  46. 46.
    Bertrand M, Chabin A, Brack A, Westall F (2008) J Chromatogr A 1180:131–137CrossRefGoogle Scholar
  47. 47.
    Junge M, Huegel H, Marriott PJ (2007) Chirality 19:228–234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Magdalena C. Waldhier
    • 1
  • Michael A. Gruber
    • 2
  • Katja Dettmer
    • 1
  • Peter J. Oefner
    • 1
    Email author
  1. 1.Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
  2. 2.Department of AnesthesiologyUniversity Hospital RegensburgRegensburgGermany

Personalised recommendations