Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 3, pp 687–693 | Cite as

Development of bacteria-based bioassays for arsenic detection in natural waters

  • Elizabeth Diesel
  • Madeline Schreiber
  • Jan Roelof van der MeerEmail author
Trends

Abstract

Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor–reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor–reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams.

Keywords

Bioassays Biosensors Escherichia coli Reporter proteins 

References

  1. 1.
    Mandal BK, Suzuki KT (2002) Talanta 58:201–235CrossRefGoogle Scholar
  2. 2.
    Jain CK, Ali I (2000) Water Res 34:4304–4312CrossRefGoogle Scholar
  3. 3.
    National Research Council (1999) Arsenic in drinking water. National Academy Press, WashingtonGoogle Scholar
  4. 4.
    Smith AH, Lingas EO, Rahman M (2000) Bull World Health Organ 78:1093–1103PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim KW, Bang S, Zhu Y, Meharg AA, Bhattacharya P (2009) Environ Int (in press)Google Scholar
  6. 6.
    Smedley PL, Kinniburgh DG (2002) Appl Geochem 17:517–568CrossRefGoogle Scholar
  7. 7.
    Cai J, DuBow MS (1997) Biodegradation 8:105–111CrossRefGoogle Scholar
  8. 8.
    Oremland RS, Stolz JF (2003) Science 300:939–944CrossRefGoogle Scholar
  9. 9.
    Cullen WR, Reimer KJ (1989) Chem Rev 89:713–764CrossRefGoogle Scholar
  10. 10.
    Hung DQ, Nekrassova O, Compton RG (2004) Talanta 64:269–277CrossRefGoogle Scholar
  11. 11.
    Melamed D (2005) Anal Chim Acta 532:1–13CrossRefGoogle Scholar
  12. 12.
    Rahman M, Mukherjee D, Sengupta MK, Chowdhury UK, Lodh D, Chanda CR, Roy S, Selim M, Quamrussaman Q, Milton AH, Shahidullah SM, Rahman MT, Chakraborti D (2002) Environ Sci Technol 36:5385–5394CrossRefGoogle Scholar
  13. 13.
    Steinmaus CM, George CM, Kalman DA, Smith AH (2006) Environ Sci Technol 40:3362–3366CrossRefGoogle Scholar
  14. 14.
    van der Meer JR, Tropel D, Jaspers MCM (2004) Environ Microbiol 6:1005–1020CrossRefGoogle Scholar
  15. 15.
    Rosen BP (1995) J Basic Clin Physiol Pharmacol 6:251–263CrossRefGoogle Scholar
  16. 16.
    Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Chem Rev 100:2705–2738CrossRefGoogle Scholar
  17. 17.
    Tauriainen S, Karp M, Chang W, Virta M (1997) Appl Environ Microbiol 63:4456–4461PubMedPubMedCentralGoogle Scholar
  18. 18.
    Tauriainen S, Virta M, Chang W, Karp M (1999) Anal Biochem 272:191–198CrossRefGoogle Scholar
  19. 19.
    Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Environ Sci Technol 37:4743–4750CrossRefGoogle Scholar
  20. 20.
    Wackwitz A, Harms H, Chatzinotas A, Breuer U, Vogne C, van der Meer JR (2008) Microb Biotechnol 1:149–157CrossRefGoogle Scholar
  21. 21.
    Roberto FF, Barnes JM, Bruhn DF (2002) Talanta 58:181–188CrossRefGoogle Scholar
  22. 22.
    Rothert A, Deo SK, Millner L, Puckett LG, Madou MJ, Daunert S (2005) Anal Biochem 342:11–19CrossRefGoogle Scholar
  23. 23.
    Date A, Pasini P, Daunert S (2007) Anal Chem 79:9391–9397CrossRefGoogle Scholar
  24. 24.
    Yoshida K, Inoue K, Takahashi Y, Ueda S, Isoda K, Yagi K, Maeda I (2008) Appl Environ Microbiol 74:6730–6738CrossRefGoogle Scholar
  25. 25.
    Trang PTK, Berg M, Viet PH, Mui NV, van der Meer JR (2005) Environ Sci Technol 39:7625–7630CrossRefGoogle Scholar
  26. 26.
    Kuppardt A, Chatzinotas A, Breuer U, van der Meer JR, Harms H (2009) Appl Microbiol Biotechnol 82:785–792CrossRefGoogle Scholar
  27. 27.
    Tecon R, van der Meer JR (2008) Sensors 8:4062–4080CrossRefGoogle Scholar
  28. 28.
    Baumann B, van der Meer JR (2007) J Agric Food Chem 55:2115–2120CrossRefGoogle Scholar
  29. 29.
    Lewis C, Beggah S, Pook C, Guitart C, Redshaw C, van der Meer JR, Readman JW, Galloway T (2009) Environ Sci Technol 43:423–428CrossRefGoogle Scholar
  30. 30.
    Turner K, Xu S, Pasini P, Deo S, Bachas L, Daunert S (2007) Anal Chem 79:5740–5745CrossRefGoogle Scholar
  31. 31.
    Hakkila K, Green T, Leskin P, Ivask A, Marks R, Virta M (2004) J Appl Toxicol 24:333–342CrossRefGoogle Scholar
  32. 32.
    Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R (2007) Biosens Bioelectron 22:1396–1402CrossRefGoogle Scholar
  33. 33.
    Liao C, Jau S, Chen W, Lin C, Jou L, Liu C, Liao VH, Chang F (2008) Environ Toxicol 23:702–711CrossRefGoogle Scholar
  34. 34.
    Tauriainen SM, Virta MPJ, Karp MT (2000) Water Res 34:2661–2666CrossRefGoogle Scholar
  35. 35.
    Tamminen MV, Virta MP (2007) Chemosphere 66:1329–1335CrossRefGoogle Scholar
  36. 36.
    Harms H, Rime J, Leupin O, Hug SJ, van der Meer JR (2005) Microchim Acta 151:217–222CrossRefGoogle Scholar
  37. 37.
    Wells M, Gösch M, Harms H, van der Meer JR (2005) Microchim Acta 151:209–216CrossRefGoogle Scholar
  38. 38.
    Wells M, Gösch M, Rigler R, Harms H, Lasser T, van der Meer JR (2005) Anal Chem 77:2683–2689CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Elizabeth Diesel
    • 1
  • Madeline Schreiber
    • 1
  • Jan Roelof van der Meer
    • 2
    Email author
  1. 1.Department of GeosciencesVirginia TechBlacksburgUSA
  2. 2.Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland

Personalised recommendations