Analytical and Bioanalytical Chemistry

, Volume 394, Issue 3, pp 783–789 | Cite as

Surface modification using a novel type I hydrophobin HGFI

  • Sen Hou
  • Xinxin Li
  • Xiaoyu Li
  • Xi-Zeng FengEmail author
  • Rui Wang
  • Chen Wang
  • Lei Yu
  • Ming-Qiang Qiao
Original Paper


Surface wettability conversion with hydrophobins is important for its applications in biodevices. In this work, the application of a type I hydrophobin HGFI in surface wettability conversion on mica, glass, and poly(dimethylsiloxane) (PDMS) was investigated. X-ray photoelectron spectroscopy (XPS) and water-contact-angle (WCA) measurements indicated that HGFI modification could efficiently change the surface wettability. Data also showed that self-assembled HGFI had better stability than type II hydrophobin HFBI. Protein patterning and the following immunoassay illustrated that surface modification with HGFI should be a feasible strategy for biosensor device fabrication.


A hydrophobin HGFI has been applied into surface wettability conversion for protein immobilization


Hydrophobin XPS WCA Self-assembly Protein patterning 



This work has been supported by the National Natural Science Foundation of China (Grant number: 90403140).

Supplementary material

216_2009_2776_MOESM1_ESM.pdf (87 kb)
Detailed elemental scans of N1s, C1s, Si2p and Al2p on mica, glass and PDMS surfaces. (DOC 88 kb)


  1. 1.
    Yam CM, Mayeux A, Milenkovic A, Cai CZ (2002) Langmuir 18:10274–10278CrossRefGoogle Scholar
  2. 2.
    Hektor HJ, Scholtmeijer K (2005) Curr Opin Biotech 16:434–439CrossRefGoogle Scholar
  3. 3.
    Wessels JGH, de Vries OMH, Asgeirsdottir SA, Schuren FHJ (1991) Plant Cell 3:793–799CrossRefGoogle Scholar
  4. 4.
    Wosten HAB (2001) Annu Rev Microbiol 55:625–646CrossRefGoogle Scholar
  5. 5.
    Wessels JGH (1994) Annu Rev Phytopathol 32:413–437CrossRefGoogle Scholar
  6. 6.
    Scholtmeijer K, Janssen MI, Gerssen B, de Vocht ML, Leeuwen BM, von Kooten TG, Wosten HA, Wessels JG (2002) Appl Environ Microbiol 68:1367–1373CrossRefGoogle Scholar
  7. 7.
    de Vocht ML, Reviakine I, Wosten HA, Brisson A, Wessels JG, Robillard GT (2000) J Biol Chem 275:28428–28432CrossRefGoogle Scholar
  8. 8.
    Torkkeli M, Serimaa R, Ikkala O, Linder M (2002) Biophys J 83:2240–2247CrossRefGoogle Scholar
  9. 9.
    Ritva S, Torkkeli M, Paananen A, Linder M, Kisko K, Knaapila M, Ikkala O, Vuorimaa E, Lemmetyinend H, Seecke O (2003) J Appl Crystallogr 36:499–502CrossRefGoogle Scholar
  10. 10.
    de Vries OMH, Fekkes MP, Wosten HAB, Wessels JGH (1993) Arch Microbiol 159:330–335CrossRefGoogle Scholar
  11. 11.
    Carpenter CE, Mueller RJ, Kazmierczak P, Zhang L, Villalon DK, van Alfen NK (1992) Mol Plant Microbe Interact 5:55–61CrossRefGoogle Scholar
  12. 12.
    Sarno DM, Murphy AV, DiVirgilio ES, Jones WE, Ben RN (2003) Langmuir 19:4740–4744CrossRefGoogle Scholar
  13. 13.
    Wang LK, Feng XZ, Hou S, Chan QL, Qin M (2006) Surface Interface Anal 38:44–50CrossRefGoogle Scholar
  14. 14.
    Qin M, Hou S, Wang LK, Feng XZ, Wang R, Yang YL, Wang C, Liu L, Shao B, Qiao MQ (2007) Colloids and Surfaces B Biointerfaces 60:243–249CrossRefGoogle Scholar
  15. 15.
    Park JH, Park KD, Bae YH (1999) Biomaterials 20:943–953CrossRefGoogle Scholar
  16. 16.
    Marois Y, Sigot-Luizard MF, Guidoin R (1999) ASAIO J 45:272–280CrossRefGoogle Scholar
  17. 17.
    Ertel SI, Ratner BD, Kaul A, Schway MB, Horbett TA (1994) J Biomed Mater Res 28:667–675CrossRefGoogle Scholar
  18. 18.
    van-Kooten TG, Whitesides JF, von Recum AF (1998) J Biomed Mater Res 43:1–14CrossRefGoogle Scholar
  19. 19.
    Interrante LV, Shen Q, Li J (2001) Macromolecules 34:1545–1547CrossRefGoogle Scholar
  20. 20.
    Dahrouch M, Schemidt A, Leemans L, Linssen H, Goetz H (2003) Macromol Symp 199:147–162CrossRefGoogle Scholar
  21. 21.
    Wessels JG (1997) Adv Microb Physiol 38:1–45PubMedGoogle Scholar
  22. 22.
    Genzer J, Efimenko K (2000) Science 290:2130–2133CrossRefGoogle Scholar
  23. 23.
    Wilson DJ, Pond RC, Williams RL (2000) Interface Sci 8:389–399CrossRefGoogle Scholar
  24. 24.
    Xia Y, Whitesides GM (1998) Angew Chem Int Ed Engl 37:550–575CrossRefGoogle Scholar
  25. 25.
    Khorasani MT, Mirzadeh H, Sammes PG (1999) Radiat Phy Chem 55:685–689CrossRefGoogle Scholar
  26. 26.
    Okaniwa M, Ohta Y (1997) J Polym Sci Part A Polym Chem 35:2607–2617CrossRefGoogle Scholar
  27. 27.
    Yu L, Zhang B, Szilvay GR, Sun R, Janis J, Wang Z, Feng S, Xu H, Linder MB, Qiao M (2008) Microbiology 154:1677–1685CrossRefGoogle Scholar
  28. 28.
    Kumar A, Whitesides GM (1993) Appl Phys Lett 63:2002–2004CrossRefGoogle Scholar
  29. 29.
    Wenzel RN (1936) Ind Eng Chem 28:988–990CrossRefGoogle Scholar
  30. 30.
    Wang R, Yang YL, Qin M, Wang LK, Yu L, Shao B, Qiao MQ, Wang C, Feng XZ (2007) Chem Mater 19:3227–3231CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sen Hou
    • 1
  • Xinxin Li
    • 1
  • Xiaoyu Li
    • 1
  • Xi-Zeng Feng
    • 1
    Email author
  • Rui Wang
    • 2
  • Chen Wang
    • 2
  • Lei Yu
    • 3
  • Ming-Qiang Qiao
    • 3
  1. 1.The Key Laboratory of Bioactive Materials, Ministry of EducationCollege of Life Science, Nankai UniversityTianjinChina
  2. 2.National Center for Nanoscience and TechnologyBeijingChina
  3. 3.Institute of Molecular BiologyCollege of Life Science, Nankai UniversityTianjinChina

Personalised recommendations