Analytical and Bioanalytical Chemistry

, Volume 394, Issue 3, pp 911–917 | Cite as

Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna

  • Brian P. Jackson
  • Heather E. Pace
  • Antonio Lanzirotti
  • Randy Smith
  • James F. Ranville
Technical Note

Abstract

The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

Keywords

Nanoparticles Quantum dots Synchrotron XRF Elemental imaging Tomography 

References

  1. 1.
    Medintz IL, Mattoussi H, Clapp AR (2008) Potential clinical applications of quantum dots. Int J Nanomedicine 3:151–167Google Scholar
  2. 2.
    Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433CrossRefGoogle Scholar
  3. 3.
    Zhang H, Yee D, Wang C (2008) Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine 3:83–91CrossRefGoogle Scholar
  4. 4.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRefGoogle Scholar
  5. 5.
    Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338CrossRefGoogle Scholar
  6. 6.
    Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961CrossRefGoogle Scholar
  7. 7.
    Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  8. 8.
    Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, Suzuki K, Yasuhara M, Yamamoto K (2004) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48:985–994Google Scholar
  9. 9.
    Zhang HZ, Huang F, Gilbert B, Banfield JF (2003) Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles. J Phys Chem B 107:13051–13060CrossRefGoogle Scholar
  10. 10.
    Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA (2008) Aqueous toxicity and food chain transfer of quantum Dots (TM) in freshwater algae and Ceriodaphnia dubia. Environ Toxicol Chem 27:1958–1963CrossRefGoogle Scholar
  11. 11.
    Shaw JR, Dempsey TD, Chen CY, Hamilton JW, Folt CL (2006) Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids. Environ Toxicol Chem 25:182–189CrossRefGoogle Scholar
  12. 12.
    Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316CrossRefGoogle Scholar
  13. 13.
    Phipps GL, Mattson VR, Ankley GT (1995) Relative sensitivity of 3 fresh-water benthic macroinvertebrates to 10 contaminants. Archives Environ Contam Toxicol 28:281–286Google Scholar
  14. 14.
    Sibley PK, Ankley GT, Cotter AM, Leonard EN (1996) Predicting chronic toxicity of sediments spiked with zinc: an evaluation of the acid-volatile sulfide model using a life-cycle test with the midge Chironomus tentans. Environ Toxicol Chem 15:2102–2112Google Scholar
  15. 15.
    Ingersoll CG, Dwyer FJ, May TW (1990) Toxicity of inorganic and organic selenium to Daphnia-magna (Cladocera) and Chironomus-Riparius (Diptera). Environ Toxicol Chem 9:1171–1181Google Scholar
  16. 16.
    Beaty TV, Hendricks AC (2001) The relationship of Chironomus riparius larval Se body burden and body concentration to larval dry mass and effects on sensitivity to selenium. Environ Toxicol Chem 20:1630–1640Google Scholar
  17. 17.
    Ingle TM, Alexander R, Bouldin J, Buchanan RA (2008) Absorption of semiconductor nanocrystals by the aquatic invertebrate Ceriodaphnia dubia. Bull Environ Contam Toxicol 81:249–252CrossRefGoogle Scholar
  18. 18.
    Jackson BP, Williams PL, Lanzirotti A, Bertsch PM (2005) Evidence for biogenic pyromorphite formation by the nematode Caenorhabditis elegans. Environ Sci Technol 39:5620–5625CrossRefGoogle Scholar
  19. 19.
    De Samber B, Silversmit G, Evens R, De Schamphelaere K, Janssen C, Masschaele B, Van Hoorebeke L, Balcaen L, Vanhaecke F, Falkenberg G, Vincze L (2008) Three-dimensional elemental imaging by means of synchrotron radiation micro-XRF: developments and applications in environmental chemistry. Anal Bioanal Chem 390:267–271CrossRefGoogle Scholar
  20. 20.
    De Samber B, Evens R, De Schamphelaere K, Silversmit G, Masschaele B, Schoonjans T, Vekemans B, Janssen CR, Van Hoorebeke L, Szaloki I, Vanhaecke F, Falkenberg G, Vincze L (2008) A combination of synchrotron and laboratory X-ray techniques for studying tissue-specific trace level metal distributions in Daphnia magna. J Anal Atom Spectrosc 23:829–839CrossRefGoogle Scholar
  21. 21.
    Gophen M, Geller W (1984) Filter mesh size and food particle uptake by daphnia. Oecologia 64:408–412CrossRefGoogle Scholar
  22. 22.
    Fox HM (1952) Anal and oral intake of water by Crustacea. J Exp Biol 29:583–599Google Scholar
  23. 23.
    Kim SA, Punshon T, Lanzirotti A, Li LT, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298CrossRefGoogle Scholar
  24. 24.
    Xu XHN, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:10400–10413CrossRefGoogle Scholar
  25. 25.
    Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. App Environ Microbiol 71:2548–2557CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Brian P. Jackson
    • 1
  • Heather E. Pace
    • 2
  • Antonio Lanzirotti
    • 3
  • Randy Smith
    • 4
  • James F. Ranville
    • 2
  1. 1.Trace Element Analysis Laboratory, Departments of Earth Sciences and ChemistryDartmouth CollegeHanoverUSA
  2. 2.Department of Chemistry and GeochemistryColorado School of MinesGoldenUSA
  3. 3.Consortium for Advanced Radiation SourcesUniversity of ChicagoChicagoUSA
  4. 4.National Synchrotron Light SourceBrookhaven National LaboratoryUptonUSA

Personalised recommendations