Analytical and Bioanalytical Chemistry

, Volume 394, Issue 3, pp 871–882 | Cite as

Phytochemical analysis of young fustic (Cotinus coggygria heartwood) and identification of isolated colourants in historical textiles

  • Lemonia Valianou
  • Konstantina Stathopoulou
  • Ioannis KarapanagiotisEmail author
  • Prokopios Magiatis
  • Eleni Pavlidou
  • Alexios-Leandros Skaltsounis
  • Yannis Chryssoulakis
Original Paper


Young fustic (Cotinus coggygria Scop.; Anacardiaceae) has been used as a dyestuff since antiquity. Phytochemical investigation of the methanol extract of the heartwood has led to the isolation and structure elucidation by nuclear magnetic resonance and mass spectrometry (MS) of 3′,4′,6-trihydroxyaurone (sulfuretin) and 3′,4′,7-trihydroxyflavonol (fisetin) as well as 3′,4′,7-trihydroxyflavanol (fustin), 3′,4′,5,7-tetrahydroxyflavonol (quercetin), 3′,4′,5,7-tetrahydroxyflavanol (taxifolin), 4′,7-dihydroxyflavanol, 3′,4′,7-trihydroxyflavanone (butin), 4′,7-dihydroxyflavanone (liquiritigenin), trans-2′,3,4,4′-tetrahydroxychalcone (butein), 4′,5,7-trihydroxyflavanone and trans-2′,4,4′-trihydroxychalcone (isoliquiritigenin). The isolated compounds were used as reference materials for the development of a high-performance liquid chromatography–diode array detector–MS method, which was then applied to analyse (1) fresh silk samples dyed with young fustic, (2) dyed silk subjected to artificially accelerated light ageing and (3) historical silk micro-samples, extracted from ecclesiastical post-Byzantine garments (fifteenth to eighteenth century), which belong to monasteries of Mount Athos. Sulfuretin and fisetin, which are usually used as markers for the identification of the yellow dye and, for the first time, some of the aforementioned flavonoid components of young fustic were identified in the historical extracts. Furthermore, preliminary experiments suggested that although the amounts of the dye components decrease with light ageing, the relative ratio of fisetin and sulfuretin, after a first step of ageing, seems to be almost unaffected by such degradation processes raised by light. The effect of the latter on the morphology of the dyed silk fibres is briefly investigated by scanning electron microscopy.


HPLC Natural products NMR/ESR Archeometry/fine arts 



The project was funded by the General Secreteriat for Research and Technology of Greece (Program PENED 2003-697) and the Getty Foundation (USA). The authors would like to thank Dr. C. Karydis for providing the historical samples and Dr. E. Kalpoutzakis for the collection and identification of the plant material.


  1. 1.
    Baumann H (1993) Greek wild flowers and plant lore in ancient Greece. Herbert, LondonGoogle Scholar
  2. 2.
    Cardon D (2007) Natural dyes—sources, tradition, technology and science. Archetype, LondonGoogle Scholar
  3. 3.
    Hofenk-de Graaff JH (2004) The colourful past: origins, chemistry and identification of natural dyestuffs. Archetype, LondonGoogle Scholar
  4. 4.
    Westenburg HE, Lee K-J, Lee SK, Fong HHS, van Breemen RB, Pezzuto JM, Kinghorn AD (2000) J Nat Prod 63:1696–1698CrossRefGoogle Scholar
  5. 5.
    Wouters J (1985) Stud Conserv 30:119–128Google Scholar
  6. 6.
    Wouters J, Verhecken A (1989) Stud Conserv 34:189–200Google Scholar
  7. 7.
    Koren ZC (1995) Isr J Chem 35:117–124CrossRefGoogle Scholar
  8. 8.
    Novotná P, Pacáková V, Bosáková Z, Štulík K (1999) J Chromatogr A 863:235–241CrossRefGoogle Scholar
  9. 9.
    Orska-Gawryś J, Surowiec I, Kehl J, Rejniak H, Urbaniak-Walczak K, Trojanowicz M (2003) J Chromatogr A 989:239–248CrossRefGoogle Scholar
  10. 10.
    Nowik W, Desrosiers S, Surowiec I, Trojanowicz M (2005) Archaeometry 47(4):835–848CrossRefGoogle Scholar
  11. 11.
    Joosten I, van Bommel MR (2008) Microchim Acta 162:433–446CrossRefGoogle Scholar
  12. 12.
    Surowiec I, Quye A, Trojanowicz M (2006) J Chromatogr A 1112:209–217CrossRefGoogle Scholar
  13. 13.
    Clementi C, Nowik W, Romani A, Cibin F, Favaro G (2007) Anal Chim Acta 596:46–54CrossRefGoogle Scholar
  14. 14.
    Karapanagiotis I, Lakka A, Valianou L, Chryssoulakis Y (2008) Microchim Acta 160(4):477–483CrossRefGoogle Scholar
  15. 15.
    Ferreira ESB, Quye A, McNab H, Hulme AN, Wouters J, Boon JJ (2001) Dyes History Archaeol 16/17:179–186Google Scholar
  16. 16.
    Szostek B, Orska-Gawrys J, Surowiec I, Trojanowicz M (2003) J Chromatogr A 1012:179–192CrossRefGoogle Scholar
  17. 17.
    Ackacha MA, Połeć-Pawlak K, Jarosz M (2003) J Sep Sci 26:1028–1034CrossRefGoogle Scholar
  18. 18.
    Zhang X, Laursen RA (2005) Anal Chem 77:2022–2025CrossRefGoogle Scholar
  19. 19.
    Karapanagiotis I (2006) Am Lab 38(3):36–40Google Scholar
  20. 20.
    Boldizsár I, Szűcs Z, Füzfai Z, Molnár-Perl I (2006) J Chromatogr A 1133:259–274CrossRefGoogle Scholar
  21. 21.
    Zhang X, Boytner R, Luis Cabrera J, Laursen R (2007) Anal Chem 79:1575–1582CrossRefGoogle Scholar
  22. 22.
    Surowiec I, Szostek B, Trojanowicz M (2007) J Sep Sci 30:2070–2079CrossRefGoogle Scholar
  23. 23.
    Zhang X, Good I, Laursen R (2008) J Archaeol Sci 35:1095–1103CrossRefGoogle Scholar
  24. 24.
    Rafaëlly L, Héron S, Nowik W, Tchapla A (2008) Dyes Pigments 77:191–203CrossRefGoogle Scholar
  25. 25.
    Rosenberg E (2008) Anal Bioanal Chem 391:33–57CrossRefGoogle Scholar
  26. 26.
    Peggie DA, Hulme AN, McNab H, Quye A (2008) Microchim Acta 162:371–380CrossRefGoogle Scholar
  27. 27.
    Herminghaus S (2000) Europhys Lett 52:165CrossRefGoogle Scholar
  28. 28.
    Patonay T, Levai A, Nemes C (1996) J Org Chem 61:5375–5383CrossRefGoogle Scholar
  29. 29.
    Li Y-L, Li J, Wang N-L, Yao X-S (2008) Molecules 12:1931–1941CrossRefGoogle Scholar
  30. 30.
    Jassbi AR, Singh P, Krishna V, Gupta PK, Tahara S (2004) Chem Nat Com 40:250–253CrossRefGoogle Scholar
  31. 31.
    Awad HM, Boersma MG, Boeren S (2001) Chem Res Toxicol 14:398–408CrossRefGoogle Scholar
  32. 32.
    Sawada Y, Kinoshita K, Akashi T (2002) Plant J 31:555–564CrossRefGoogle Scholar
  33. 33.
    Deodhar M, Black D, Kumar N (2007) Tetrahedron 63:5227–5235CrossRefGoogle Scholar
  34. 34.
    Selenski C, Pettus TRR (2006) Tetrahedron 62:5298–5307CrossRefGoogle Scholar
  35. 35.
    Assimopoulou AN, Karapanagiotis I, Vasiliou A, Kokkini S, Papageorgiou VP (2006) Biomed Cromatogr 20:1359–1374CrossRefGoogle Scholar
  36. 36.
    Trojanowicz M, Orska Gawryś J, Surowiec I, Szostek B, Urbaniak-Walczak K, Kehl J, Wróbel M (2004) Stud Conserv 49:115–130CrossRefGoogle Scholar
  37. 37.
    Joosten I, van Bommel MR, Hofman-de Keijzer R, Reschreiter H (2006) Microchim Acta 155:169–174CrossRefGoogle Scholar
  38. 38.
    Odlyha M, Wang Q, Foster GM, de Groot J, Horton M, Bozec L (2005) J Therm Anal Calorim 82(3):627–636CrossRefGoogle Scholar
  39. 39.
    Buehler MJ, Keten S, Ackbarow T (2008) Prog Mater Sci 53:1101–1241CrossRefGoogle Scholar
  40. 40.
    Davidson RS (1996) J Photoch Photobio B 33:3–25CrossRefGoogle Scholar
  41. 41.
    Smith GJ (1995) J Photoch Photobio B 27:187–198CrossRefGoogle Scholar
  42. 42.
    Tsuboi Y, Ikejiri T, Shiga S, Yamada K, Itaya A (2001) Appl Phys A 73:637–640CrossRefGoogle Scholar
  43. 43.
    Cardamone JM, Martin JJ (2008) Macromol Symp 272:161–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Lemonia Valianou
    • 1
  • Konstantina Stathopoulou
    • 2
  • Ioannis Karapanagiotis
    • 3
    Email author
  • Prokopios Magiatis
    • 2
  • Eleni Pavlidou
    • 4
  • Alexios-Leandros Skaltsounis
    • 2
  • Yannis Chryssoulakis
    • 1
  1. 1.National Technical University of Athens, School of Chemical EngineeringAthensGreece
  2. 2.Department of Pharmacognosy and Natural Products Chemistry, Faculty of PharmacyNational & Kapodistrian University of AthensAthensGreece
  3. 3.Ormylia Art Diagnosis CentreChalkidikiGreece
  4. 4.Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations