Analytical and Bioanalytical Chemistry

, Volume 394, Issue 5, pp 1361–1373 | Cite as

Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS)

  • Nils Helge Schebb
  • Helene Faber
  • Ronald Maul
  • Ferry Heus
  • Jeroen Kool
  • Hubertus Irth
  • Uwe Karst
Original Paper

Abstract

A novel method for the identification of glutathione/electrophile adducts that are inhibiting glutathione-S-transferase (GST) activity was developed and applied for the analysis of the mycotoxin patulin. The method is based on high-performance liquid chromatography (HPLC) coupled to a continuous-flow enzyme reactor serving as biochemical detector (BCD) in parallel to electrospray mass spectrometric detection (ESI-MS). This HPLC-BCD technique combines a separation step and the detection of the inhibition and is therefore ideally suited for the analysis of the activity of single patulin/glutathione adducts within a complex mixture of adducts. Two out of at least 15 detected patulin–glutathione adducts showed strong GST inhibition. In ESI-MS, the inhibitory active adducts were characterized by [M + H]+ ions with m/z 462.1138 and m/z 741.2011, respectively. They could be identified as a dihydropyranone adduct containing one molecule glutathione and a ketohexanoic acid bearing two glutathione molecules.

Graphical Abstract

OnlineAbstractFigure

Keywords

HPLC-BCD Patulin–glutathione adducts Glutathione-S-transferase inhibition ESI(+)-MS/MS Fragmentation reactions 

Notes

Acknowledgements

We thank Dr. Heinrich Luftmann (University of Münster, Germany) for helpful discussions. The “Studienstiftung des Deutschen Volkes” (Bonn, Germany) is gratefully acknowledged for financial support in form of a Ph.D. scholarship for Nils Helge Schebb.

Supplementary material

216_2009_2765_MOESM1_ESM.pdf (71 kb)
ESM I (PDF 71.1 kb)

References

  1. 1.
    Rychlik M, Schieberle P (1999) J Agric Food Chem 47:3749–3755CrossRefGoogle Scholar
  2. 2.
    Tangni EK, Theys R, Mignolet E, Maudoux M, Michelet JY, Larondelle Y (2003) Food Addit Contam 20:482–489CrossRefGoogle Scholar
  3. 3.
    Drusch S, Ragab W (2003) J Food Prot 66:1514–1527Google Scholar
  4. 4.
    WHO (1995) World Health Organ Tech Rep Ser 859:1–54Google Scholar
  5. 5.
    Alves I, Oliveira NG, Laires A, Rodrigues AS, Rueff J (2000) Mutagenesis 15:229–234CrossRefGoogle Scholar
  6. 6.
    McKinley ER, Carlton WW, Boon GD (1982) Food Chem Toxicol 20:289–300CrossRefGoogle Scholar
  7. 7.
    Mahfoud R, Maresca M, Garmy N, Fantini J (2002) Toxicol Appl Pharmacol 181:209–218CrossRefGoogle Scholar
  8. 8.
    Riley RT, Showker JL (1991) Toxicol Appl Pharmacol 109:108–126CrossRefGoogle Scholar
  9. 9.
    Thust R, Kneist S, Mendel J (1982) Mut Res Let 103:91–97CrossRefGoogle Scholar
  10. 10.
    Pfeiffer E, Gross K, Metzler M (1998) Carcinogenesis 19:1313–1318CrossRefGoogle Scholar
  11. 11.
    Liu B-H, Yu F-Y, Wu T-S, Li S-Y, Su M-C, Wang M-C, Shih S-M (2003) Toxicol Appl Pharmacol 191:255–263CrossRefGoogle Scholar
  12. 12.
    Schumacher D, Metzler M, Lehmann L (2005) Arch Toxicol 79:110–121CrossRefGoogle Scholar
  13. 13.
    Schumacher DM, Muller C, Metzler M, Lehmann L (2006) Toxicol Lett 166:268–275CrossRefGoogle Scholar
  14. 14.
    Dickens F, Jones HEH (1961) Brit J Cancer 15:85–100Google Scholar
  15. 15.
    Barhoumi R, Burghardt RC (1996) Fundam Appl Toxicol 30:290–297CrossRefGoogle Scholar
  16. 16.
    Pfeiffer E, Diwald TT, Metzler M (2005) Mol Nutr Food Res 49:329–336CrossRefGoogle Scholar
  17. 17.
    Luft P, Oostingh GJ, Gruijthuijsen Y, Horejs-Hoeck J, Lehmann I, Duschl A (2008) Environ Toxicol 23:84–95CrossRefGoogle Scholar
  18. 18.
    Rychlik M, Kircher F, Schusdziarra V, Lippl F (2004) Food Chem Toxicol 42:729–735CrossRefGoogle Scholar
  19. 19.
    Larsson P, Tjalve H (1992) Cancer Res 52:1267–1277Google Scholar
  20. 20.
    Lind RC, Gandolfi AJ, Hall PM (1992) Anesthesiology 77:721–727CrossRefGoogle Scholar
  21. 21.
    Fliege R, Metzler M (2000) Chem Res Toxicol 13:373–381CrossRefGoogle Scholar
  22. 22.
    Rychlik M (2005) Nutrition 29:61–68Google Scholar
  23. 23.
    Rychlik M (2003) Food Addit Contam 20:829–837CrossRefGoogle Scholar
  24. 24.
    Lindroth S, von Wright A (1990) J Environ Pathol Toxicol Oncol 10:254–259Google Scholar
  25. 25.
    Lindroth S, von Wright A (1978) Appl Environ Microbiol 35:1003–1007Google Scholar
  26. 26.
    van Bladeren PJ, van Ommen B (1991) Pharmacol Ther 51:35–46CrossRefGoogle Scholar
  27. 27.
    Schebb NH, Heus F, Saenger T, Karst U, Irth H, Kool J (2008) Anal Chem 80:6764–6772CrossRefGoogle Scholar
  28. 28.
    de Jong CF, Derks RJ, Bruyneel B, Niessen W, Irth H (2006) J Chromatogr A 1112:303–310CrossRefGoogle Scholar
  29. 29.
    van Elswijk DA, Diefenbach O, van der Berg S, Irth H, Tjaden UR, van der Greef J (2003) J Chromatogr A 1020:45–58CrossRefGoogle Scholar
  30. 30.
    Kool J, van Liempd SM, Ramautar R, Schenk T, Meerman JH, Irth H, Commandeur JN, Vermeulen NP (2005) J Biomol Screen 10:427–436CrossRefGoogle Scholar
  31. 31.
    Kool J, Eggink M, van Rossum H, van Liempd SM, van Elswijk DA, Irth H, Commandeur JN, Meerman JH, Vermeulen NP (2007) J Biomol Screen 12:396–405CrossRefGoogle Scholar
  32. 32.
    Lake BG (1987) In: Snell K, Mullock B (eds) Biochemical toxicology: a practical approach. IRL Press, Oxford, pp 183–215Google Scholar
  33. 33.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefGoogle Scholar
  34. 34.
    Baillie TA, Davis MR (1993) Biol Mass Spectrom 22:319–325CrossRefGoogle Scholar
  35. 35.
    Wen B, Ma L, Nelson SD, Zhu M (2008) Anal Chem 80:1788–1799CrossRefGoogle Scholar
  36. 36.
    Haroldsen PE, Reilly MH, Hughes H, Gaskell SJ, Porter CJ (1988) Biomed Environ Mass Spectrom 15:615–621CrossRefGoogle Scholar
  37. 37.
    Maul R, Schebb NH, Kulling SE (2008) Anal Bioanal Chem 391:239–250CrossRefGoogle Scholar
  38. 38.
    van Elswijk DA, Irth H (2003) Phytochem Rev 1:427–439CrossRefGoogle Scholar
  39. 39.
    van Ommen B, Ploemen JH, Bogaards JJ, Monks TJ, Gau SS, van Bladeren PJ (1991) Biochem J 276(Pt 3):661–666Google Scholar
  40. 40.
    Fliege R, Metzler M (1999) Chemico-Biological Int 123:85–103CrossRefGoogle Scholar
  41. 41.
    Ashoor SH, Chu FS (1973) Food Cosmet Toxicol 11:995–1000Google Scholar
  42. 42.
    Ashoor SH, Chu FS (1973) Food Cosmet Toxicol 11:617–624CrossRefGoogle Scholar
  43. 43.
    Arafat W, Kern D, Dirheimer G (1985) Chem Biol Interact 56:333–349CrossRefGoogle Scholar
  44. 44.
    Askelof P, Guthenberg C, Jakobson I, Mannervik B (1975) Biochemical J 147:513–522Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nils Helge Schebb
    • 1
  • Helene Faber
    • 1
  • Ronald Maul
    • 2
  • Ferry Heus
    • 3
  • Jeroen Kool
    • 3
  • Hubertus Irth
    • 3
  • Uwe Karst
    • 1
  1. 1.Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Center for Cardiovascular Research (CCR), Institut für PharmakologieCharité-Universitätsmedizin BerlinBerlinGermany
  3. 3.Department of Chemistry and Pharmaceutical Sciences, Section Analytical Chemistry & Applied SpectroscopyVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations