Analytical and Bioanalytical Chemistry

, Volume 394, Issue 7, pp 1729–1745 | Cite as

Surface-enhanced Raman spectroscopy: substrate-related issues

  • Xiu-Mei Lin
  • Yan Cui
  • Yan-Hui Xu
  • Bin Ren
  • Zhong-Qun Tian


After over 30 years of development, surface-enhanced Raman spectroscopy (SERS) is now facing a very important stage in its history. The explosive development of nanoscience and nanotechnology has assisted the rapid development of SERS, especially during the last 5 years. Further development of surface-enhanced Raman spectroscopy is mainly limited by the reproducible preparation of clean and highly surface enhanced Raman scattering (SERS) active substrates. This review deals with some substrate-related issues. Various methods will be introduced for preparing SERS substrates of Ag and Au for analytical purposes, from SERS substrates prepared by electrochemical or vacuum methods, to well-dispersed Au or Ag nanoparticle sols, to nanoparticle thin film substrates, and finally to ordered nanostructured substrates. Emphasis is placed on the analysis of the advantages and weaknesses of different methods in preparing SERS substrates. Closely related to the application of SERS in the analysis of trace sample and unknown systems, the existing cleaning methods for SERS substrates are analyzed and a combined chemical adsorption and electrochemical oxidation method is proposed to eliminate the interference of contaminants. A defocusing method is proposed to deal with the laser-induced sample decomposition problem frequently met in SERS measurement to obtain strong signals. The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.


Silver Gold Substrate preparation Substrate cleaning Photodecomposition Surface enhancement factor 



This work was supported by the National Basic Research Program of China (973 Program nos. 2009CB930703, 2007CB935603 and 2007DFC40440), the Natural Science Foundation of China (20673086, 20620130427, 20825313, and 20827003), and the Ministry of Education of China (NCET-05-0564).


  1. 1.
    Pettinger B (1992) In: Lipkowski J, Ross PN (eds) Adsorption of molecules at metal electrodes. VCH, New York, pp 285–345Google Scholar
  2. 2.
    McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  3. 3.
    Smith E, Dent G (2005) Modern Raman spectroscopy. Wiley, New YorkGoogle Scholar
  4. 4.
    Hartschuh A (2008) Angew Chem Int Ed 47:8178–8191CrossRefGoogle Scholar
  5. 5.
    Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  6. 6.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20CrossRefGoogle Scholar
  7. 7.
    Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  8. 8.
    Tian ZQ (ed) (2005) Journal Raman Spectrosc 36:465–747Google Scholar
  9. 9.
    Brown R, Milton MJT, Smith WE (eds) (2006) Faraday Discuss 132:1–340Google Scholar
  10. 10.
    Graham D, Goodcare R (eds) (2008) Chem Soc Rev 37:873–1076Google Scholar
  11. 11.
    Furtak TE, Chang RK (1982) Surface enhanced Raman scattering. Plenum, New YorkGoogle Scholar
  12. 12.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143–1212CrossRefGoogle Scholar
  13. 13.
    Moskovits M (2005) J Raman Spectrosc 36:485–496CrossRefGoogle Scholar
  14. 14.
    Tian ZQ (2006) Faraday Discuss 132:227–247CrossRefGoogle Scholar
  15. 15.
    Ding SY, Wu DY, Yang ZL, Ren B, Xu X, Tian ZQ (2008) Chem J Chin Univ Chin 29:2569–2581Google Scholar
  16. 16.
    Gersten JI, Birke RL, Lombardi JR (1979) Phys Rev Lett 43:147–150CrossRefGoogle Scholar
  17. 17.
    Burstein E, Chen YJ, Chen CY, Lundquist S, Tosatti E (1979) Solid State Commun 29:567–570CrossRefGoogle Scholar
  18. 18.
    Otto A (1984) In: Cardona M, Guntherodt G (eds) Light scattering in solids. Springer, Berlin, pp 289–418Google Scholar
  19. 19.
    Moskovits M (1985) Rev Mod Phys 57:783–828CrossRefGoogle Scholar
  20. 20.
    Gersten JI (1980) J Chem Phys 73:3023–3037CrossRefGoogle Scholar
  21. 21.
    Hulteen JC, Van Duynea RP (1995) J Vac Sci Technol A 13:1553–1558CrossRefGoogle Scholar
  22. 22.
    Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  23. 23.
    Natan MJ (2006) Faraday Discuss 132:321–328CrossRefGoogle Scholar
  24. 24.
    Ackermann KR, Henkel T, Popp J (2007) Chemphyschem 8:2665–2670CrossRefGoogle Scholar
  25. 25.
    Bell SEJ, Sirimuthu NMS (2008) Chem Soc Rev 37:1012–1024CrossRefGoogle Scholar
  26. 26.
    Jarvis RM, Johnson HE, Olembe E, Panneerselvam A, Malik MA, Afzaal M, O’Brien P, Goodacre R (2008) Analyst 133:1449–1452CrossRefGoogle Scholar
  27. 27.
    Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Nano Lett 6:2630–2636CrossRefGoogle Scholar
  28. 28.
    Kneipp J, Kneipp H, Kneipp K (2008) Chem Soc Rev 37:1052–1060CrossRefGoogle Scholar
  29. 29.
    Mulvihill M, Tao A, Benjauthrit K, Arnold J, Yang P (2008) Angew Chem Int Ed 47:6456–6460CrossRefGoogle Scholar
  30. 30.
    Evanoff DD, Heckel J, Caldwell TP, Christensen KA, Chumanov G (2006) J Am Chem Soc 128:12618–12619CrossRefGoogle Scholar
  31. 31.
    Jarvis RM, Law N, Shadi LT, O’Brien P, Lloyd JR, Goodacre R (2008) Anal Chem 80:6741–6746CrossRefGoogle Scholar
  32. 32.
    Qian XM, Zhou X, Nie SM (2008) J Am Chem Soc 130:14934–14935CrossRefGoogle Scholar
  33. 33.
    Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463–9483CrossRefGoogle Scholar
  34. 34.
    Tian ZQ, Ren B (2003) In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, New York, pp 572–659Google Scholar
  35. 35.
    Gao P, Weaver MJ (1985) J Phys Chem 89:5040–5070CrossRefGoogle Scholar
  36. 36.
    Ren B, Liu GK, Lian XB, Yang ZL, Tian ZQ (2007) Anal Bioanal Chem 388:29–45CrossRefGoogle Scholar
  37. 37.
    Fleischmann M, Tian ZQ, Li LJ (1987) J Electroanal Chem 217:397–410CrossRefGoogle Scholar
  38. 38.
    Wing L, Leung H, Weaver MJ (1987) J Am Chem Soc 109:5113–5119CrossRefGoogle Scholar
  39. 39.
    Weaver MJ, Zou SZ, Chan HYH (2000) Anal Chem 72:38A–47ACrossRefGoogle Scholar
  40. 40.
    Rowe JE, Shank CW, Zwemer DA, Murray CA (1980) Phys Rev Lett 44:1770–1773CrossRefGoogle Scholar
  41. 41.
    Moskovits M (1983) Chem Phys Lett 98:498–502CrossRefGoogle Scholar
  42. 42.
    Knight DS, Weimer R, Pilione L, White WB (1990) Appl Phys Lett 56:1320–1322CrossRefGoogle Scholar
  43. 43.
    Eickmans J, Otto A, Goldmann A (1986) Surf Sci 171:415–441CrossRefGoogle Scholar
  44. 44.
    Taylor CE, Pemberton JE, Goodman GG, Schoenfisch MH (1999) Appl Spectrosc 53:1212–1221CrossRefGoogle Scholar
  45. 45.
    Pileni MP (2007) J Phys Chem C 111:9019–9038CrossRefGoogle Scholar
  46. 46.
    Frens G (1973) Nat Phys Sci 241:20–22Google Scholar
  47. 47.
    Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 75:790–798CrossRefGoogle Scholar
  48. 48.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1925CrossRefGoogle Scholar
  49. 49.
    Sun YG, Xia YN (2002) Science 298:2176–2179CrossRefGoogle Scholar
  50. 50.
    Sau TK, Murphy CJ (2004) J Am Chem Soc 126:8648–8649CrossRefGoogle Scholar
  51. 51.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  52. 52.
    Nie SM, Emory SR (1997) Science 275:1102–1106CrossRefGoogle Scholar
  53. 53.
    Wang DS, Chew H, Kerker M (1980) Appl Opt 19:2256–2257CrossRefGoogle Scholar
  54. 54.
    Kerker M (1987) J Colloid Interface Sci 118:1CrossRefGoogle Scholar
  55. 55.
    Emery SR, Haskins WE, Nie SM (1998) J Am Chem Soc 120:8009–8010CrossRefGoogle Scholar
  56. 56.
    Krug JT, Wang GD, Emory SR, Nie SM (1999) J Am Chem Soc 121:9208–9214CrossRefGoogle Scholar
  57. 57.
    Gersten JI (1980) J Chem Phys 72:5779–5780CrossRefGoogle Scholar
  58. 58.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677CrossRefGoogle Scholar
  59. 59.
    Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Anal Chem 77:3261–3266CrossRefGoogle Scholar
  60. 60.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2007) Nano Lett 7:1591–1597CrossRefGoogle Scholar
  61. 61.
    Link S, Mohamed MB, El-Sayed MA (1999) J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  62. 62.
    Parker WL, Hexter RM, Siedle AR (1984) Chem Phys Lett 107:96–98CrossRefGoogle Scholar
  63. 63.
    Tian ZQ, Ren B, Mao BW (1997) J Phys Chem B 101:1338–1346CrossRefGoogle Scholar
  64. 64.
    Srnova I, Vlckova B, Baumruk V (1997) J Mol Struct 410–411:201–203CrossRefGoogle Scholar
  65. 65.
    Guo L, Huang QJ, Li XY, Yang SH (2001) Phys Chem Chem Phys 3:1661–1665CrossRefGoogle Scholar
  66. 66.
    Gomez R, Perez JM, Solla-Gullon J, Montiel V, Aldaz A (2004) J Phys Chem B 108:9943–9949CrossRefGoogle Scholar
  67. 67.
    Kim NH, Kim K (2004) Chem Phys Lett 393:478–482CrossRefGoogle Scholar
  68. 68.
    Cui L, Wang A, Wu DY, Ren B, Tian ZQ (2008) J Phys Chem C 112:17618–17624CrossRefGoogle Scholar
  69. 69.
    Xiong YJ, McLellan JM, Chen JY, Yin YD, Li ZY, Xia YN (2005) J Am Chem Soc 127:17118–17127CrossRefGoogle Scholar
  70. 70.
    Tian ZQ, Ren B, Li JF, Yang ZL (2007) Chem Commun 3514–3534Google Scholar
  71. 71.
    Tian ZQ, Yang ZL, Ren B, Li JF, Zhang Y, Lin XF, Hu JW, Wu DY (2006) Faraday Discuss 132:159–170CrossRefGoogle Scholar
  72. 72.
    Wu DY, Li JF, Ren B, Tian ZQ (2008) Chem Soc Rev 37:1025–1041CrossRefGoogle Scholar
  73. 73.
    Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Phys Rev E 57:R6281–R6284CrossRefGoogle Scholar
  74. 74.
    Kneipp K, Kneipp H, Manoharan R, Hanlon EB, Itzkan I, Dasari RR, Feld MS (1998) Appl Spectrosc 52:1493–1497CrossRefGoogle Scholar
  75. 75.
    Keating CD, Kovaleski KM, Natan MJ (1998) J Phys Chem B 102:9404–9413CrossRefGoogle Scholar
  76. 76.
    Bell SEJ, Sirimuthu NMS (2004) Analyst 129:1032–1036CrossRefGoogle Scholar
  77. 77.
    Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Langmuir 19:4784–4790CrossRefGoogle Scholar
  78. 78.
    Qian XM, Nie SM (2008) Chem Soc Rev 37:912–920CrossRefGoogle Scholar
  79. 79.
    McCabe AF, Eliasson C, Prasath RA, Hernandez-Santana A, Stevenson L, Apple I, Cormack PAG, Graham D, Smith WE, Corish P, Lipscomb SJ, Holland ER, Prince PD (2006) Faraday Discuss 132:303–308CrossRefGoogle Scholar
  80. 80.
    Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) J Phys Chem B 110:4002–4006CrossRefGoogle Scholar
  81. 81.
    Kim K, Lee HB, Shin KS (2008) Langmuir 24:5893–5898CrossRefGoogle Scholar
  82. 82.
    Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Science 267:1627–1632CrossRefGoogle Scholar
  83. 83.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735–743CrossRefGoogle Scholar
  84. 84.
    Grabar KC, Smith PC, Musick MD, Davis JA, Walter DG, Jackson MA, Guthrie AP, Natan MJ (1996) J Am Chem Soc 118:1148–1153CrossRefGoogle Scholar
  85. 85.
    Brown KR, Natan MJ (1998) Langmuir 14:726–728CrossRefGoogle Scholar
  86. 86.
    Gao MX, Lin XM, Ren B (2008) Chem J Chin Univ Chin 29:959–962Google Scholar
  87. 87.
    Wang H, Levin CS, Halas NJ (2005) J Am Chem Soc 127:14992–14993CrossRefGoogle Scholar
  88. 88.
    Roberts G (1990) Langmuir Blodgett films. Plenum, New YorkGoogle Scholar
  89. 89.
    Tao AR, Huang JX, Yang PD (2008) Acc Chem Res 41:1662–1673CrossRefGoogle Scholar
  90. 90.
    Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Nano Lett 3:1229–1233CrossRefGoogle Scholar
  91. 91.
    Tao A, Sinsermsuksakul P, Yang P (2007) Nat Nanotechnol 2:435–440CrossRefGoogle Scholar
  92. 92.
    Menon VP, Martin CR (1995) Anal Chem 67:1920–1928CrossRefGoogle Scholar
  93. 93.
    Yao JL, Tang J, Wu DY, Sun DM, Xue KH, Ren B, Mao BW, Tian ZQ (2002) Surf Sci 514:108–116CrossRefGoogle Scholar
  94. 94.
    Zhai XF, Mu C, Xu DS, Tong LM, Zhu T, Du WM (2008) Spectrosc Spectral Anal 28:2329–2332Google Scholar
  95. 95.
    Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) J Phys Chem C 111:17985–17988CrossRefGoogle Scholar
  96. 96.
    Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL (2006) Adv Mater 18:491–495CrossRefGoogle Scholar
  97. 97.
    Mahajan S, Abdelsalam M, Suguwara Y, Cintra S, Russell A, Baumberg J, Bartlett P (2007) Phys Chem Chem Phys 9:104–109CrossRefGoogle Scholar
  98. 98.
    Haynes CL, Van Duyne RP (2003) J Phys Chem B 107:7426–7433CrossRefGoogle Scholar
  99. 99.
    Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Faraday Discuss 132:9–26CrossRefGoogle Scholar
  100. 100.
    Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Appl Phys Lett 78:802–804CrossRefGoogle Scholar
  101. 101.
    Marquestaut N, Martin A, Talaga D, Servant L, Ravaine S, Reculusa S, Bassani DM, Gillies E, Lagugne-Labarthet F (2008) Langmuir 24:11313–11321CrossRefGoogle Scholar
  102. 102.
    Huebner U, Boucher R, Schneidewind H, Cialla D, Popp J (2008) Microelectron Eng 85:1792–1794CrossRefGoogle Scholar
  103. 103.
    Alvarez-Puebla R, Cui B, Bravo-Vasquez JP, Veres T, Fenniri H (2007) J Phys Chem C 111:6720–6723CrossRefGoogle Scholar
  104. 104.
    Li ZY, Tong WM, Stickle WF, Neiman DL, Williams RS, Hunter LL, Talin AA, Li D, Brueck SRJ (2007) Langmuir 23:5135–5138CrossRefGoogle Scholar
  105. 105.
    Zou SZ, Chen YX, Mao BW, Ren B, Tian ZQ (1997) J Electroanal Chem 424:19–24CrossRefGoogle Scholar
  106. 106.
    Norrod KL, Rowlen KL (1998) Anal Chem 70:4218–4221CrossRefGoogle Scholar
  107. 107.
    Norrod KL, Rowlen KL (1998) J Am Chem Soc 120:2656–2657CrossRefGoogle Scholar
  108. 108.
    Taylor CE, Garvey SD, Pemberton JE (1996) Anal Chem 68:2401–2408CrossRefGoogle Scholar
  109. 109.
    Bewicka A, Thomasa B (1975) J Electroanal Chem 65:911–931CrossRefGoogle Scholar
  110. 110.
    Otto A (1978) Surf Sci 75:L392–L396CrossRefGoogle Scholar
  111. 111.
    Cai ZP, Wang B, He TC, Zhang L, Mo YJ (2007) J Light Scattering 19:124–127Google Scholar
  112. 112.
    Li MD, Cui Y, Gao MX, Luo J, Ren B, Tian ZQ (2008) Anal Chem 80:5118–5125CrossRefGoogle Scholar
  113. 113.
    Meinhart CD, Wereley ST (2003) Meas Sci Technol 14:1047–1053CrossRefGoogle Scholar
  114. 114.
    Mahoney MR, Cooney RP (1983) J Phys Chem 87:5314–5319CrossRefGoogle Scholar
  115. 115.
    Ramsey J, Ranganathan S, McCreery RL, Zhao J (2001) Appl Spectrosc 55:767–773CrossRefGoogle Scholar
  116. 116.
    Vess TM, Wertz DW (1991) J Electroanal Chem 313:81–94CrossRefGoogle Scholar
  117. 117.
    Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) J Phys Chem C 111:13794–13803CrossRefGoogle Scholar
  118. 118.
    Cai WB, Ren B, Li XQ, She CX, Liu FM, Cai XW, Tian ZQ (1998) Surf Sci 406:9–22CrossRefGoogle Scholar
  119. 119.
    Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:9CrossRefGoogle Scholar
  120. 120.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) J Phys Chem B 109:11279–11285CrossRefGoogle Scholar
  121. 121.
    Hildebrandt P, Stockburger M (1984) J Phys Chem 88:5935–5944CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Xiu-Mei Lin
    • 1
  • Yan Cui
    • 1
  • Yan-Hui Xu
    • 2
  • Bin Ren
    • 1
  • Zhong-Qun Tian
    • 1
  1. 1.State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.Research Center of Biomedical Engineering, College of MaterialsXiamen UniversityXiamenChina

Personalised recommendations