Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 3, pp 863–869 | Cite as

A semi-quantitative dipstick assay for microcystin

  • Nils Tippkötter
  • Henning Stückmann
  • Stephen Kroll
  • Gunda Winkelmann
  • Udo Noack
  • Thomas Scheper
  • Roland UlberEmail author
Original Paper

Abstract

An immunochromatographic lateral flow dipstick assay for the fast detection of microcystin-LR was developed. Colloid gold particles with diameters of 40 nm were used as red-colored antibody labels for the visual detection of the antigen. The new dipstick sensor is capable of detecting down to 5 µg·l−1 (ppb; total inversion of the color signal) or 1 ppb (observation of color grading) of microcystin-LR. The course of the labeling reaction was observed via spectrometric wave shifts caused by the change of particle size during the binding of antibodies. Different stabilizing reagents showed that especially bovine serum albumin (BSA) and casein increase the assays sensitivity and the conjugate stability. Performance of the dipsticks was quantified by pattern processing of capture zone CCD images. Storage stability of dipsticks and conjugate suspensions over 115 days under different conditions were monitored. The ready-to-use dipsticks were successfully tested with microcystin-LR-spiked samples of outdoor drinking- and salt water and applied to the tissue of microcystin-fed mussels.

Keywords

Dipstick Immunochromatographic Toxin Microcystin Gold nanoparticles Lateral flow 

Notes

Acknowledgments

This research project was supported by the "Otto von Guericke" e.V. AiF (Association of Industrial Research Organisations; AiF-No. KF0479001KMD3).

We thank Sartorius AG for providing material and equipment for the preparation of the dipsticks.

Supplementary material

216_2009_2750_MOESM1_ESM.pdf (218 kb)
Supplementary Material Figs. S1–S4(PDF 217 kb)

References

  1. 1.
    Ueno Y, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Tamura S, Sekijima M, lTashiro F, Harada T, Yoshida T (1999) No chronic oral toxicity of a low dose of microcystin-LR, a cyanobacterial hepatotoxin, in female BALB/c mice. Environmental Toxicology 14(1):45–55CrossRefGoogle Scholar
  2. 2.
    Weller MG (2002) Algengifte im Wasser. Nachrichten aus der Chemie 50(7):700–705CrossRefGoogle Scholar
  3. 3.
    Lindner P, Molz R, Yacoub-George E, Durkop A, Wolf H (2004) Development of a highly sensitive inhibition immunoassay for microcystin-LR. Analytica Chimica Acta 521(1):37–44CrossRefGoogle Scholar
  4. 4.
    Pyo D, Lee J, Choi E (2005) Trace analysis of microcystins in water using enzyme-linked immunosorbent assay. Microchem J 80(2):165–169CrossRefGoogle Scholar
  5. 5.
    Sheng J-w, He M, Yu S-q, Shi H-c, Yi Q (2006) Detection of microcystin-LR in waters using indirect competitive ELISA. Huan Jing Ke Xue 27(6):1166–70PubMedGoogle Scholar
  6. 6.
    Sheng JW, He M, Shi HC, Qian Y (2006) A comprehensive immunoassay for the detection of microcystins in waters based on polyclonal antibodies. Analytica Chimica Acta 572(2):309–315CrossRefGoogle Scholar
  7. 7.
    Mhadhbi H, Ben-Rejeb S, Cleroux, Martel A, Delahaut P (2006) Generation and characterization of polyclonal antibodies against microcystins - Application to immunoassays and immunoaffinity sample preparation prior to analysis by liquid chromatography and UV detection. Talanta 70(2):225–235CrossRefGoogle Scholar
  8. 8.
    Sun W, Huang B, Shi J, Jiang T (2007) The use of ultrasensitive time-resolved fluoroimmunoassay for rapid detection of microcystin LR. Wei Sheng Yan Jiu 36(2):187–9PubMedGoogle Scholar
  9. 9.
    Sheng JW, He M, Shi HC (2007) A highly specific immunoassay for microcystin-LR detection based on a monoclonal antibody. Analytica Chimica Acta 603(1):111–118CrossRefGoogle Scholar
  10. 10.
    Chandler J, Robinson N, Whiting K (2001) Handling false signals in gold-based rapid tests. IVD Technology 7(2):34–45Google Scholar
  11. 11.
    Pristoupil TI, Kramlova M, Sterbikova J (1969) On mechanism of adsorption of proteins to nitrocellulose in membrane chromatography. J. Chromatog. 42:367–375CrossRefGoogle Scholar
  12. 12.
    Chandler J, Gurmin T, Robinson N (2000) The place of gold in rapid tests. IVD Technology 6(2):37–49Google Scholar
  13. 13.
    Baschong W, Wrigley NG (1990) Small colloidal gold conjugated to Fab fragments or to immunoglobulin-G as high-resolution labels for electron-microscopy—a technical overview. J Electron Microsc Tech 14(4):313–323CrossRefGoogle Scholar
  14. 14.
    Horisberger M, Rosset J, Bauer H (1975) Colloidal gold granules as markers for cell-surface receptors in scanning electron-microscope. Experientia 31(11):1147–1149CrossRefGoogle Scholar
  15. 15.
    Pyo D, Choi J, Hong J, Oo HH (2006) Rapid analytical detection of microcystins using gold colloidal immunochromatographic strip. J Immunoassay Immunochemistry 27(4):291–302CrossRefGoogle Scholar
  16. 16.
    Slot JW, Geuze HJ (1985) A New method of preparing gold probes for multiple-labeling cyto-chemistry. Eur J Cell Biol 38(1):87–93PubMedGoogle Scholar
  17. 17.
    Zeck A et al (2001) Highly sensitive immunoassay based on a monoclonal antibody specific for [4-arginine]microcystins. Anal Chim Acta 441:1CrossRefGoogle Scholar
  18. 18.
    Weller MG et al (2001) Development of a direct competitive microcystin immunoassay of broad specificity. Anal Sci 17:1445CrossRefGoogle Scholar
  19. 19.
    Stückmann H (2007) Entwicklung immunchemischer Schnelltestverfahren. PhD Thesis, University of HanoverGoogle Scholar
  20. 20.
    Cuello AC (1983) Immunohistochemistry, International Brain Research Organisation. 1200Google Scholar
  21. 21.
    Silverton EW, Navia MA, Davies DR (1977) 3-Dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci USA 74(12):5140–5144CrossRefGoogle Scholar
  22. 22.
    Chow MK, Zukoski CF (1994) Gold sol formation mechanisms—role of colloidal stability. J Colloid Interface Sci 165(1):97–109CrossRefGoogle Scholar
  23. 23.
    Hodgkinson JL, Steffen W (2001) Direct labeling of components in protein complexes by immuno-electron microscopy. Meth. Molec. Biol., vol. 161 Cytoskeleton Methods and Protocols, ed. R.H. Gavin, Humana Press Inc., Totowa, NJ, 133-139Google Scholar
  24. 24.
    Kawaguchi H, Sakamoto K, Ohtsuka Y, Ohtake T, Sekiguchi H, Iri H (1989) Fundamental-study on latex reagents for agglutination tests. Biomaterials 10(4):225–229CrossRefGoogle Scholar
  25. 25.
    Al-Yousif Y, Anderson J, Chard-Bergstrom C, Kapil S (2002) Development, evaluation, and application of lateral-flow immunoassay (immunochromatography) for detection of rotavirus in bovine fecal samples. Clin Diagn Lab Immunol 9(3):723–724PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nils Tippkötter
    • 1
  • Henning Stückmann
    • 2
  • Stephen Kroll
    • 2
  • Gunda Winkelmann
    • 3
  • Udo Noack
    • 3
  • Thomas Scheper
    • 2
  • Roland Ulber
    • 1
    Email author
  1. 1.Institute of Bioprocess Engineering, Department of Mechanical & Process EngineeringUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Institute of Technical ChemistryUniversity of HanoverHanoverGermany
  3. 3.Dr. U. Noack-Laboratorien31157SarstedtGermany

Personalised recommendations