Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 7, pp 1811–1818 | Cite as

Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates

  • Dana Cialla
  • Ronald Siebert
  • Uwe Hübner
  • Robert Möller
  • Henrik Schneidewind
  • Roland Mattheis
  • Jörg Petschulat
  • Andreas Tünnermann
  • Thomas Pertsch
  • Benjamin DietzekEmail author
  • Jürgen PoppEmail author
Original Paper

Abstract

Surface-enhanced Raman scattering (SERS) is a potent tool in bioanalytical science because the technique combines high sensitivity with molecular specificity. However, the widespread and routine use of SERS in quantitative biomedical diagnostics is limited by tight requirements on the reproducibility of the noble metal substrates used. To solve this problem, we recently introduced a novel approach to reproducible SERS substrates. In this contribution, we apply ultrafast time-resolved spectroscopy to investigate the photo-induced collective charge-carrier dynamics in such substrates, which represents the fundamental origin of the SERS mechanism. The ultrafast experiments are accompanied by scanning-near field optical microscopy and SERS experiments to correlate the appearance of plasmon dynamics with the resultant evanescent field distribution and the analytically relevant SERS enhancement.

Figure

Ultrafast time-resolved differential absorption spectroscopy combined with scanning near-field optical microscopy (left) and atomic force microscopy (right) yields insight into the photoinduced charge-carrier dynamics in innovative reproducible SERS-substrates

Keywords

Nanostructured gold surfaces Surface-enhanced Raman scattering (SERS) Reproducible SERS substrates Femtosecond time-resolved dynamics Scanning near-field optical microscopy 

Notes

Acknowledgments

The authors thank Christa Schmidt for the AFM image, Denis Akimov for technical assistance, and Michael Schmitt for helpful discussions and critical reading of the manuscript. R.S., B.D., and J.P. thank the Fonds der Chemischen Industrie for financial support. The research project “Jenaer Biochip Initiative (JBCI)” within the framework “InnoProfile—Unternehmen Region” is financially supported by the Federal Ministry of Education and Research (BMBF) Germany. Further financial support by the BMBF (Innoregio-ZIK and Metamat) as well as from Carl Zeiss, Inc. is acknowledged.

References

  1. 1.
    Link S, El-Sayed MA (1999) J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  2. 2.
    El-Sayed MA (2001) Acc Chem Res 34:257–264CrossRefGoogle Scholar
  3. 3.
    Link S, El-Sayed MA (2003) Annu Rev Phys Chem 54:331–366CrossRefGoogle Scholar
  4. 4.
    Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) J Phys Chem B 104:10549–10556CrossRefGoogle Scholar
  5. 5.
    Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) J Chem Phys 111:4729–4735CrossRefGoogle Scholar
  6. 6.
    Petry R, Schmitt M, Popp J (2003) Chem Phys Chem 4:14–30Google Scholar
  7. 7.
    Hering K, Cialla D, Ackermann K, Dorfer T, Moller R, Schneidewind H, Mattheis R, Fritzsche W, Rosch P, Popp J (2008) Anal Bioanal Chem 390:113–124CrossRefGoogle Scholar
  8. 8.
    Camden JP, Dieringer JA, Zhao J, Van Duyne RP (2008) Acc Chem Res 41:1653–1661CrossRefGoogle Scholar
  9. 9.
    Schmuck C, Wich P, Küstner B, Kiefer W, Schlücker S (2007) Ang Chem Int Ed 46:4786–4789CrossRefGoogle Scholar
  10. 10.
    Küstner B, Gellner M, Schütz M, Schöppler F, Marx A, Ströbel P, Adam P, Schmuck C, Schlücker S (2009) Ang Chem 121:1984–1987CrossRefGoogle Scholar
  11. 11.
    Garrett NL, Vukusic P, Ogrin F, Sirotkin E, Winlove CP, Moger J (2008) J Biophot 2:157–166. doi: 10.1002/jbio.200810057 CrossRefGoogle Scholar
  12. 12.
    Strehle KR, Cialla D, Rösch P, Henkel T, Köhler M, Popp J (2007) Anal Chem 79:1542–1547CrossRefGoogle Scholar
  13. 13.
    Ackermann KR, Henkel T, Popp J (2007) Chem Phys Chem 8:2665–2670Google Scholar
  14. 14.
    Haynes CL, Yonzon CR, Zhang X, Van Duyne RP (2005) J Raman Spectrosc 36:471–484CrossRefGoogle Scholar
  15. 15.
    Bailo E, Deckert V (2008) Chem Soc Rev 37:921–930CrossRefGoogle Scholar
  16. 16.
    Neugebauer U, Roesch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) Chem Phys Chem 7:1428–1430Google Scholar
  17. 17.
    Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) J Raman Spectrosc 40:240–243Google Scholar
  18. 18.
    Huebner U, Boucher R, Schneidewind H, Cialla D, Popp J (2008) Microelectr Eng 85:1792–1794CrossRefGoogle Scholar
  19. 19.
    Cialla D, Hübner U, Schneidewind H, Möller R, Popp J (2008) Chem Phys Chem 9:758–762Google Scholar
  20. 20.
    Melinger JS, Kleinman VD, McMorrow D, Gröhn F, Bauer BJ, Amis E (2003) J Phys Chem A 107:3424–3431CrossRefGoogle Scholar
  21. 21.
    Kriebig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  22. 22.
    Link S, Furube A, Mohamed MB, Asahi T, Masuhara H, El-Sayed MA (2002) J Phys Chem B 106:945–955CrossRefGoogle Scholar
  23. 23.
    Jain PK, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:2426–2433CrossRefGoogle Scholar
  24. 24.
    Siebert R, Akimov D, Schmitt M, Schubert US, Winter A, Dietzek B, Popp J (2009) ChemPhysChem. doi: 10.1002/cphc.200800847
  25. 25.
    Wang F, Zheng J, Li X, Ji Y, Gao Y, Xing W, Lu T (2003) J Electroanal Chem 545:123–128CrossRefGoogle Scholar
  26. 26.
    Schmitt M, Dietzek B, Hermann G, Popp J (2007) Laser Photon Rev 1:57–78CrossRefGoogle Scholar
  27. 27.
    Schoenlein RW, Lin WZ, Fujimoto JG, Eesley GL (1987) Phys Rev Lett 58:1680–1683CrossRefGoogle Scholar
  28. 28.
    Eesley GL (1983) Phys Rev Lett 51:2140–2143CrossRefGoogle Scholar
  29. 29.
    Dietzek B, Kiefer W, Blumhoff J, Böttcher L, Rau S, Walther D, Uhlemann U, Schmitt M, Popp J (2006) Chem Eur J 12:5105–5115CrossRefGoogle Scholar
  30. 30.
    Benkö G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundström V (2002) J Am Chem Soc 124:489–493CrossRefGoogle Scholar
  31. 31.
    Dietzek B, Kiefer W, Hermann G, Popp J, Schmitt M (2006) J Phys Chem B 110:4399–4406CrossRefGoogle Scholar
  32. 32.
    Dietzek B, Maksimenka R, Siebert T, Birckner E, Kiefer W, Popp J, Hermann G, Schmitt M (2004) Chem Phys Lett 397:110–115CrossRefGoogle Scholar
  33. 33.
    Dietzek B, Kiefer W, Yartsev A, Sundstrom V, Schellenberg P, Grigaravicius P, Hermann G, Popp J, Schmitt M (2006) Chem Phys Chem 7:1727–1733Google Scholar
  34. 34.
    Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA (2005) Science 310:1006–1010CrossRefGoogle Scholar
  35. 35.
    Maksimenka R, Dietzek B, Szeghalmi AV, Siebert T, Kiefer W, Schmitt M (2005) Chem Phys Lett 408:37–43Google Scholar
  36. 36.
    Dietzek B, Yartsev A, Tarnovsky A (2007) J Phys Chem B 111:4520–4526CrossRefGoogle Scholar
  37. 37.
    Dietzek B, Brüggemann B, Pascher T, Yartsev A (2006) Phys Rev Lett 97:258301CrossRefGoogle Scholar
  38. 38.
    Dietzek B, Maksimenka R, Hermann G, Kiefer W, Popp J, Schmitt M (2004) ChemPhysChem 5:1171–1177CrossRefGoogle Scholar
  39. 39.
    Imura K, Naahara T, Okamoto H (2004) J Phys Chem B 108:16344–16347CrossRefGoogle Scholar
  40. 40.
    Msukens OL, Del Fatti N, Valle F (2006) Nano Lett 6:552–556CrossRefGoogle Scholar
  41. 41.
    Inouye H, Tanaka K, Tanahashi I, Hirao K (1998) Phys Rev B 57:11334–11340CrossRefGoogle Scholar
  42. 42.
    Fang Y, Seong NH, Dlott DD (2008) Science 321:388–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dana Cialla
    • 1
  • Ronald Siebert
    • 2
  • Uwe Hübner
    • 3
  • Robert Möller
    • 1
    • 3
  • Henrik Schneidewind
    • 3
  • Roland Mattheis
    • 3
  • Jörg Petschulat
    • 4
  • Andreas Tünnermann
    • 4
  • Thomas Pertsch
    • 4
  • Benjamin Dietzek
    • 2
    • 3
    Email author
  • Jürgen Popp
    • 1
    • 3
    Email author
  1. 1.Institute of Physical ChemistryFriedrich Schiller University Jena (Jenaer Biochip Initiative—JBCI)JenaGermany
  2. 2.Institute of Physical ChemistryFriedrich Schiller University JenaJenaGermany
  3. 3.Institute for Photonic Technology JenaJenaGermany
  4. 4.Institute of Applied Physics, NanoopticsFriedrich Schiller University JenaJenaGermany

Personalised recommendations