Analytical and Bioanalytical Chemistry

, Volume 394, Issue 3, pp 801–809 | Cite as

Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS)

  • Jaemin An
  • Jangwon Lee
  • Sang Ho Lee
  • Jungyul Park
  • Byungkyu Kim
Original Paper

Abstract

In this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells (MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically. Following that, the quantitative relative ratio of numbers between MCF 7 and MCF 10A cells in each size-dependent group separated by the DEP were compared according to applied frequencies in the range 48, 51, and 53 MHz with an applied amplitude of 8 Vpp. Finally, under the applied voltage of 48 MHz–8 Vpp and a flow rate of 290 μm/s, MCF 7 and MCF 10A cells were separated with a maximum efficiency of 86.67% and 98.73% respectively. Therefore, our suggested system shows it can be used for detection and separation of cancerous epithelial cells from noncancerous cells in clinical applications.

Keywords

Dielectrophoresis Cell separation Microfluidics Cancer Malignant cells 

References

  1. 1.
    Friedman SL, Roll FJ (1987) Anal Biochem 161(1):207–218CrossRefGoogle Scholar
  2. 2.
    Tulp A, Verwoerd D, Pieters J (1993) Electrophoresis 14(12):1295–1301CrossRefGoogle Scholar
  3. 3.
    Miltenyi S, Muller W, Weichel W, Radbruch A (1990) Cytometry 11(2):231–238CrossRefGoogle Scholar
  4. 4.
    Malatesta P, Hartfuss E, Gotz M (2000) Development 127(24):5253–5263Google Scholar
  5. 5.
    Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in non-uniform electric fields. UK, Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Wang XB, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PR (2000) Anal Chem 72(4):832–839CrossRefGoogle Scholar
  7. 7.
    Huang Y, Mather EL, Bell JL, Madou M (2002) Anal Bioanal Chem 372(1):49–65CrossRefGoogle Scholar
  8. 8.
    Yang J, Huang Y, Wang XB, Becker FF, Gascoyne PR (2000) Biophys J 78(5):2680–2689CrossRefGoogle Scholar
  9. 9.
    Yang J, Huang Y, Wang X, Wang XB, Becker FF, Gascoyne PR (1999) Biophys J 76(6):3307–3314CrossRefGoogle Scholar
  10. 10.
    Cheng J, Sheldon EL, Wu L, Uribe A, Gerrue LO, Carrino J, Heller MJ, O'Connell JP (1998) Nat Biotechnol 16(6):541–546CrossRefGoogle Scholar
  11. 11.
    Green NG, Morgan H, Milner JJ (1997) J Biochem Biophys Methods 35(2):89–102CrossRefGoogle Scholar
  12. 12.
    Asbury CL, van den Engh G (1998) Biophys J 74(2 Pt 1):1024–1030CrossRefGoogle Scholar
  13. 13.
    Gascoyne PRC, Huang Y, Pethig R, Vykoukal J, Becker FF (1992) Measurement Science & Technology 3(5):439–445CrossRefGoogle Scholar
  14. 14.
    Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PR (1995) Proc Natl Acad Sci USA 92(3):860–864CrossRefGoogle Scholar
  15. 15.
    Wang XB, Huang Y, Wang X, Becker FF, Gascoyne PR (1997) Biophys J 72(4):1887–1899CrossRefGoogle Scholar
  16. 16.
    Labeed FH, Coley HM, Thomas H, Hughes MP (2003) Biophys J 85(3):2028–2034CrossRefGoogle Scholar
  17. 17.
    Huang Y, Wang XB, Becker FF, Gascoyne PR (1997) Biophys J 73(2):1118–1129CrossRefGoogle Scholar
  18. 18.
    Altomare L, Borgatti M, Medoro G, Manaresi N, Tartagni M, Guerrieri R, Gambari R (2003) Biotechnol Bioeng 82(4):474–479CrossRefGoogle Scholar
  19. 19.
    Park J, Kim B, Choi SK, Hong S, Lee SH, Lee KI (2005) Lab Chip 5(11):1264–1270CrossRefGoogle Scholar
  20. 20.
    Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. UK, Research Studies Press, BaldockGoogle Scholar
  21. 21.
    Voldman J, Braff RA, Toner M, Gray ML, Schmidt MA (2001) Biophys J 80(1):531–541CrossRefGoogle Scholar
  22. 22.
    Park J, Chung S, Yun H, Cho KC, Chung CA, Han DC, Chang JK (2006) Current Applied Physics 6(6):992–995CrossRefGoogle Scholar
  23. 23.
    Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Biophys J 88(5):3689–3698CrossRefGoogle Scholar
  24. 24.
    Coley HM, Labeed FH, Thomas H, Hughes MP (2007) Biochimica Et Biophysica Acta-General Subjects 1770(4):601–608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jaemin An
    • 1
  • Jangwon Lee
    • 1
  • Sang Ho Lee
    • 2
  • Jungyul Park
    • 3
  • Byungkyu Kim
    • 1
  1. 1.School of Aerospace and Mechanical EngineeringKorea Aerospace UniversityGoyangKorea
  2. 2.School of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
  3. 3.Mechanical EngineeringSogang UniversitySeoulKorea

Personalised recommendations