Analytical and Bioanalytical Chemistry

, Volume 394, Issue 7, pp 1819–1825

Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy

  • Jeffrey M. McMahon
  • Anne-Isabelle Henry
  • Kristin L. Wustholz
  • Michael J. Natan
  • R. Griffith Freeman
  • Richard P. Van Duyne
  • George C. Schatz
Original Paper

Abstract

Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 1010 or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.

Keywords

Finite element method Surface-enhanced Raman spectroscopy Electromagnetic field enhancement Nanoparticle dimer 

Supplementary material

216_2009_2738_MOESM1_ESM.pdf (196 kb)
ESM 1Probability distributions of electromagnetic enhancements for nanoparticle separations from 5 to −20 nm; Percentage and number of molecules that contribute to the SERS signal for particle separations of 5 to −20 nm and molecular diameters of 0.25 to 2 nm (PDF 195 kb).

References

  1. 1.
    Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215CrossRefGoogle Scholar
  2. 2.
    Fleischman M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163CrossRefGoogle Scholar
  3. 3.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 1:84Google Scholar
  4. 4.
    Schatz GC (1984) Acc Chem Res 17:370CrossRefGoogle Scholar
  5. 5.
    Metiu H, Das P (1984) Annu Rev Phys Chem 35:507CrossRefGoogle Scholar
  6. 6.
    Xu H, Aizpurua J, Kall M, Apell P (2000) Phys Rev E 62:4318CrossRefGoogle Scholar
  7. 7.
    Schatz GC, Van Duyne RP (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New YorkGoogle Scholar
  8. 8.
    Nie S, Emory SR (1997) Science 275:1102CrossRefGoogle Scholar
  9. 9.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667CrossRefGoogle Scholar
  10. 10.
    Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, Schatz GC, Van Duyne RP (2009) J Am Chem Soc 131:849CrossRefGoogle Scholar
  11. 11.
    Kerker M, Wang DS, Chew H (1980) Appl Opt 19:3373CrossRefGoogle Scholar
  12. 12.
    Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) Adv Mater 19:3100CrossRefGoogle Scholar
  13. 13.
    Draine BT, Flatau PJ (1994) J Opt Soc Am A 11:1491CrossRefGoogle Scholar
  14. 14.
    Draine BT, Flatau PJ (2003) User guide for the discrete dipole approximation code DDSCAT.6.0. Available from: <http://arxiv.org/ags.astro-ph/0309069>
  15. 15.
    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Inc., NorwoodGoogle Scholar
  16. 16.
    Yee SK (1966) IEEE Trans Antennas Propagat 14:302CrossRefGoogle Scholar
  17. 17.
    Jin J (2002) The finite element method in electromagnetics, 2nd edn. Wiley, New YorkGoogle Scholar
  18. 18.
    Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Opt Express 6:213Google Scholar
  19. 19.
    Hao E, Schatz GC (2004) J Chem Phys 120:357CrossRefGoogle Scholar
  20. 20.
    Zou S, Schatz GC (2005) Chem Phys Lett 403:62CrossRefGoogle Scholar
  21. 21.
    Xu H (2004) Appl Phys Lett 85:5980CrossRefGoogle Scholar
  22. 22.
    Zeman EJ, Carron KT, Schatz GC, Van Duyne RP (1987) J Chem Phys 87:4189CrossRefGoogle Scholar
  23. 23.
    Kottmann JP, Martin OJF (2001) Opt Express 8:655CrossRefGoogle Scholar
  24. 24.
    Aravind PK, Nitzan A, Metiu H (1981) Surf Sci 110:189CrossRefGoogle Scholar
  25. 25.
    Vanin AI (1995) J Appl Spect 62Google Scholar
  26. 26.
    Felidj N, Aubard J, Levi G (1999) J Chem Phys 111:1195CrossRefGoogle Scholar
  27. 27.
    McMahon JM (2009) JFEM2D. Available from: <http://www.thecomputationalphysicist.com>
  28. 28.
    Schöberl J (2009) NETGEN. Available from <http://www.hpfem.jku.at/netgen/>
  29. 29.
    Saxon DS (1955) UCLA Department of Meteorological Science Report 9Google Scholar
  30. 30.
    McMahon JM, Gray SK, Schatz GC (2009) Surface nanophotonics theory. In: Wiederrecht G (ed) Comprehensive nanoscience and technology. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Lynch DW, Hunter WR (1985) In: Palik ED (ed) Handbook of optical constants of solids. Academic, OrlandoGoogle Scholar
  32. 32.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  33. 33.
    McMahon JM, Wang Y, Sherry LJ, Van Duyne RP, Marks LD, Gray SK, Schatz GC (2009) J Phys Chem C 113:2731–2735CrossRefGoogle Scholar
  34. 34.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419CrossRefGoogle Scholar
  35. 35.
    Garcia-Vidal FJ, Pendry JB (1996) Phys Rev Lett 77:1163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jeffrey M. McMahon
    • 1
  • Anne-Isabelle Henry
    • 1
  • Kristin L. Wustholz
    • 1
  • Michael J. Natan
    • 2
  • R. Griffith Freeman
    • 2
  • Richard P. Van Duyne
    • 1
  • George C. Schatz
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA
  2. 2.Oxonica Materials, Inc.Mountain ViewUSA

Personalised recommendations