Analytical and Bioanalytical Chemistry

, Volume 394, Issue 3, pp 671–678 | Cite as

Trends in Fourier transform infrared spectroscopic imaging

  • Gerald SteinerEmail author
  • Edmund Koch


Fourier transform infrared (FTIR) spectroscopic imaging is a relatively new method that has received great attention as a new field of analytical chemistry. The greatest benefit of this technique lies in the high molecular sensitivity combined with a spatial resolution down to a few micrometers. Another advantage is the ability to probe samples under native conditions, which allows new insights into samples without the need for fixation, stains, or an additional marker. Advances in instrumentation have made FTIR spectroscopic imaging the tool of choice for an increasing number of applications. The main applications are in the bioanalytical chemistry of cells and tissue, polymers, and recently as well as in homeland security. This report gives a short overview of current developments and recent applications.


FTIR image of a polymer blend reveals the chemical composition. Online Abstract Figure (365 KB).


Fourier transform infrared imaging spectroscopy Biomedical applications Polymer analysis High-throughput analysis Analysis of plants 



The author would like thank Reiner Salzer (Department of Chemistry, Dresden University of Technology,) for his help and advice. We thank Stephan Sobottka (Department of Neurosurgery, Dresden University of Technology) for providing the MRI and brain tissue samples. The working groups of Karl Friedrich Arndt (Department of Chemistry, Dresden University of Technology,) and Gerald Gerlach (Institute for Solid-State Electronics, Dresden University of Technology) are gratefully acknowledged for preparing the polymer samples. We would also like to acknowledge Frank Koschine from Bruker Optik GmbH for his support and information.


  1. 1.
    Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Anal Chem 67:3377–3381CrossRefGoogle Scholar
  2. 2.
    Grahn HF, Geladi P (eds) (2007) Techniques and applications of hyperspectral image analysis. Wiley, New YorkGoogle Scholar
  3. 3.
    Chan KLA, Kazarian SG (2003) Appl Spectrosc 57:381–389CrossRefGoogle Scholar
  4. 4.
    Bhargava R (2007) Anal Bioanal Chem 389:1155–1169CrossRefGoogle Scholar
  5. 5.
    Steiner G, Shaw A, Lin-Ping CS, Abuid MH, Schackert G, Sobottka S, Steller W, Salzer R, Mantsch HH (2003) Biopolym Biospectrosc 72:464–471CrossRefGoogle Scholar
  6. 6.
    Fernandez DC, Bhargava R, Hewitt SM, Levin IW (2005) Nat Biotechnol 23:469–474CrossRefGoogle Scholar
  7. 7.
    Boskey AL, Mendelsoh R (2005) Vibr Spectrosc 38:107–114CrossRefGoogle Scholar
  8. 8.
    Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Bone 36:6–12CrossRefGoogle Scholar
  9. 9.
    Krafft C, Codrich D, Pelizzo G, Valter S (2008) Analyst 133:361–371CrossRefGoogle Scholar
  10. 10.
    Mendelsohn R, Chen HC, Rerek ME, Moore DJ (2003) J Biomed Opt 8:185–190CrossRefGoogle Scholar
  11. 11.
    Ly E, Piot O, Wolthuis R, Durlach A, Manfait P, Manfait BM (2008) Analyst 133:197–205CrossRefGoogle Scholar
  12. 12.
    Hynes A, Scott AD, Man A, Singer DL, Sowa MG, Liu KZ (2005) BMC Med Imaging 5:2  10.1186/1471–2342–5–2 CrossRefGoogle Scholar
  13. 13.
    Diem M, Griffiths P, Chalmers J (2008) Vibrational spectroscopy for medical diagnosis. Wiley, New YorkGoogle Scholar
  14. 14.
    Gupper A, Kazarian SG (2005) Macromolecules 38:2327–2332CrossRefGoogle Scholar
  15. 15.
    Bhargava R, Wang SQ, Koenig JL (2003) Adv Polym Sci 163:137–191CrossRefGoogle Scholar
  16. 16.
    Xin Z, Pudun Z, Zhifa L, Guoying R (2007) Anal Sci 23:877–880CrossRefGoogle Scholar
  17. 17.
    Gottlieb R, Schmidt T, Ardnt KF (2005) Nucl Instrum Methods Phys Res B 236:371–376CrossRefGoogle Scholar
  18. 18.
    Salzer R, Zimmerer C, Kitsche M, Steiner G, Braun HG (2006) Prog Colloid Polym Sci 132:7–15CrossRefGoogle Scholar
  19. 19.
    Vogel C, Wessel E, Siesler H (2008) Macromolecules 41:2975–2977CrossRefGoogle Scholar
  20. 20.
    Crane N, Bartick EG, Perlman RS, Huffman S (2007) J Forensic Sci 52:48–53CrossRefGoogle Scholar
  21. 21.
    Ricci A, Chan KLA, Kazarian SG (2006) Appl Spectrosc 60:1013–1021CrossRefGoogle Scholar
  22. 22.
    Ricci C, Bleay S, Kazarian SG (2007) Anal Chem 79:5771–5776CrossRefGoogle Scholar
  23. 23.
    Heraud P, Caine S, Sanson G, Gleadow R, Wood BR, McNaughton D (2007) New Phytol 173:216–225CrossRefGoogle Scholar
  24. 24.
    Biswal D, Hilt JZ (2006) Polymer 47:7355–7360CrossRefGoogle Scholar
  25. 25.
    Sorber J, Steiner G, Schultz V, Guenther M, Gerlach G, Salzer R, Arndt KF (2008) Anal Chem 80:2957–2962CrossRefGoogle Scholar
  26. 26.
    Van der Weerd J, Kazarian SG (2004) Appl Spectrosc 58:1413–1419CrossRefGoogle Scholar
  27. 27.
    Chan KLA, Kazarian SG (2006) ACS Symp Ser 924:203–214CrossRefGoogle Scholar
  28. 28.
    Chan KLA, Kazarian SG (2005) J Comb Chem 7:185–189CrossRefGoogle Scholar
  29. 29.
    Ricci C, Nyadon L, Fernandez FM, Newton PN, Kazarian SG (2007) Anal Bioanal Chem 387:551–559CrossRefGoogle Scholar
  30. 30.
    Gupper A, Wilhelm P, Schmied M, Kazarian SG, Chan KLA, Reußner J (2002) Appl Spectrosc 56:1515–1632CrossRefGoogle Scholar
  31. 31.
    Wood BR, Bambery KR, Evans CJ, Quinn MA, McNaughton D (2006) BMC Med Imaging 6:12CrossRefGoogle Scholar
  32. 32.
    Chan KLA, Kazarian SG (2007) Appl Spectrosc 61:48–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Clinical Sensoring and MonitoringDresden University of TechnologyDresdenGermany

Personalised recommendations