Bioconjugation techniques for microfluidic biosensors

Original Paper

Abstract

We have evaluated five bioconjugation chemistries for immobilizing DNA onto silicon substrates for microfluidic biosensing applications. Conjugation by organosilanes is compared with linkage by carbonyldiimidazole (CDI) activation of silanol groups and utilization of dendrimers. Chemistries were compared in terms of immobilization and hybridization density, stability under microfluidic flow-induced shear stress, and stability after extended storage in aqueous solutions. Conjugation by dendrimer tether provided the greatest hybridization efficiency; however, conjugation by aminosilane treated with glutaraldehyde yielded the greatest immobilization and hybridization densities, as well as enhanced stability to both shear stress and extended storage in an aqueous environment. Direct linkage by CDI activation provided sufficient immobilization and hybridization density and represents a novel DNA bioconjugation strategy. Although these chemistries were evaluated for use in microfluidic biosensors, the results provide meaningful insight to a number of nanobiotechnology applications for which microfluidic devices require surface biofunctionalization, for example vascular prostheses and implanted devices.

Keywords

Microfluidics/microfabrication Biosensors DNA immobilization Surface functionalization Bioconjugation Silane stability 

Notes

Acknowledgments

Support for this work was provided by the National Institutes of Health-National Institute of Biomedical Imaging and Bioengineering (NIH-NIBIB) under grant number R21EB007031. This work made use of STC shared experimental facilities supported by the National Science Foundation under Agreement No. ECS-9876771. The authors gratefully acknowledge Dr. Sam Nugen and Prof. Antje Baeumner for technical assistance in determining hybridization conditions and Sudeep Mandal for preparation of PDMS master.

Supplementary material

216_2009_2731_MOESM1_ESM.pdf (39 kb)
Fig. S1 Schematic of DNA immobilization and microfluidic hybridization assays. Immobilization of DNA in spots defined by a PDMS mask is depicted in the image in the back. After immobilization of DNA, a microfluidic channel (1 mm × 2 cm × 45 μm) is aligned over the immobilized DNA, and target DNA is made to flow through the channel at 2 μl/min, as depicted in the image in the front. (PDF 1017 kb)

References

  1. 1.
    Erickson D, Liu XZ, Venditti R et al (2005) Anal Chem 77:4000–4007CrossRefGoogle Scholar
  2. 2.
    Ng JKK, Liu WT (2006) Anal and Bioanal Chem 386:427–434CrossRefGoogle Scholar
  3. 3.
    Dawson E, Moore C, Smagala J et al (2006) Anal Chem 78:7610–7615CrossRefGoogle Scholar
  4. 4.
    Zammatteo N, Jeanmart L, Hamels S et al (2000) Anal Biochem 280:143–150CrossRefGoogle Scholar
  5. 5.
    Wang YY, Prokein T, Hinz M et al (2005) Anal Biochem 344:216–223Google Scholar
  6. 6.
    Fritz J, Baller MK, Lang HP et al (2000) Science 288:316–318CrossRefGoogle Scholar
  7. 7.
    Wang AF, Tang HY, Cao T et al (2005) J Colloid Interface Sci 291:438–447CrossRefGoogle Scholar
  8. 8.
    Szczepanski V, Vlassiouk I, Smirnov S (2006) J Membr Sci 281:587–591CrossRefGoogle Scholar
  9. 9.
    Anker JN, Hall WP, Lyandres O et al (2008) Nat Mater 7:442–453CrossRefGoogle Scholar
  10. 10.
    Vollmer F, Arnold S (2008) Nat Methods 5:591–596CrossRefGoogle Scholar
  11. 11.
    Mandal S, Erickson D (2008) Opt Express 16:1623–1631CrossRefGoogle Scholar
  12. 12.
    Aretaki IN, Koulouridakis P, Kallithrakas-Kontos N (2006) Anal Chim Acta 562:252–257CrossRefGoogle Scholar
  13. 13.
    Pathak S, Singh AK, McElhanon JR et al (2004) Langmuir 20:6075–6079CrossRefGoogle Scholar
  14. 14.
    Keighley SD, Li P, Estrela P et al (2008) Biosens Bioelectron 23:1291–1297CrossRefGoogle Scholar
  15. 15.
    Lee CY, Nguyen PCT, Grainger DW et al (2007) Anal Chem 79:4390–4400CrossRefGoogle Scholar
  16. 16.
    Southern E, Mir K, Shchepinov M (1999) Nat Genet 21:5–9CrossRefGoogle Scholar
  17. 17.
    Shchepinov MS, Case-Green SC, Southern EM (1997) Nucleic Acids Res 25:1155–1161CrossRefGoogle Scholar
  18. 18.
    Pirri G, Chiari M, Damin F et al (2006) Anal Chem 78:3118–3124CrossRefGoogle Scholar
  19. 19.
    Le Berre V, Trevisiol E, Dagkessamanskaia A et al (2003) Nucleic Acids Res 31:e88CrossRefGoogle Scholar
  20. 20.
    Bhatnagar P, Mark SS, Kim I et al (2006) Adv Mater 18:315–319CrossRefGoogle Scholar
  21. 21.
    Benters R, Niemeyer CM, Drutschmann D et al (2002) Nucleic Acids Res 30:e10CrossRefGoogle Scholar
  22. 22.
    Caminade AM, Padie C, Laurent R et al (2006) Sensors 6:901–914CrossRefGoogle Scholar
  23. 23.
    Cote GL, Lec RM, Pishko MV (2003) IEEE Sens J 3:251–266CrossRefGoogle Scholar
  24. 24.
    Erickson D, Li DQ, Krull UJ (2003) Anal Biochem 317:186–200CrossRefGoogle Scholar
  25. 25.
    Becker H, Locascio LE (2002) Talanta 56:267–287CrossRefGoogle Scholar
  26. 26.
    Bange A, Halsall HB, Heineman WR (2005) Biosens Bioelectron 20:2488–2503CrossRefGoogle Scholar
  27. 27.
    Ros A (2008) Anal Bioanal Chem 390:799–800CrossRefGoogle Scholar
  28. 28.
    Tegenfeldt JO, Prinz C, Cao H et al (2004) Anal Bioanal Chem 378:1678–1692CrossRefGoogle Scholar
  29. 29.
    Wei CW, Cheng JY, Huang CT et al (2005) Nucleic Acids Res 33:e78CrossRefGoogle Scholar
  30. 30.
    Dittrich PS, Tachikawa K, Manz A (2006) Anal Chem 78:3887–3907CrossRefGoogle Scholar
  31. 31.
    Duffy DC, McDonald JC, Schueller OJA et al (1998) Anal Chem 70:4974–4984CrossRefGoogle Scholar
  32. 32.
    PAMAM Dendrimers (2008) Dendritech, Midland, MI. http://www.dendritech.com/pamam.html. Accessed 08 Dec 2008
  33. 33.
    Coates J (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, ChichesterGoogle Scholar
  34. 34.
    Kempfert KD (2007) Spectroscopy 22:22–23Google Scholar
  35. 35.
    Kurth DG, Bein T (1995) Langmuir 11:578–584CrossRefGoogle Scholar
  36. 36.
    Parrott MC, Valliant JF, Adronov A (2006) Langmuir 22:5251–5255CrossRefGoogle Scholar
  37. 37.
    Haba Y, Harada A, Takagishi T et al (2004) J Amer Chem Soc 126:12760–12761CrossRefGoogle Scholar
  38. 38.
    Kawahara J, Ohmori T, Ohkubo T et al (1992) Anal Biochem 201:94–98CrossRefGoogle Scholar
  39. 39.
    Whipple EB, Ruta M (1974) J Org Chem 39:1666–1668CrossRefGoogle Scholar
  40. 40.
    Migneault I, Dartiguenave C, Bertrand MJ et al (2004) BioTechniques 37:790–802Google Scholar
  41. 41.
    Saiyed ZM, Sharma S, Godawat R et al (2007) J Biotechnol 131:240–244CrossRefGoogle Scholar
  42. 42.
    Pal S, Kim MJ, Song JM (2008) Lab Chip 8:1332–1341CrossRefGoogle Scholar
  43. 43.
    Steel AB, Levicky RL, Herne TM et al (2000) Biophys J 79:975–981CrossRefGoogle Scholar
  44. 44.
    Niu YH, Sun L, Crooks RA (2003) Macromolecules 36:5725–5731CrossRefGoogle Scholar
  45. 45.
    Cakara D, Kleimann J, Borkovec M (2003) Macromolecules 36:4201–4207CrossRefGoogle Scholar
  46. 46.
    Quail M (2005) DNA: mechanical breakage. Encyclopedia of life sciences. John Wiley & Sons, Ltd, ChichesterGoogle Scholar
  47. 47.
    Panton RL (1996) Incompressible flow, 2nd edn. Wiley, New YorkGoogle Scholar
  48. 48.
    Hermanson GT (1996) Bioconjugate techniques. Academic, New YorkGoogle Scholar
  49. 49.
    Lee HJ, Nedelkov D, Corn RM (2006) Anal Chem 78:6504–6510CrossRefGoogle Scholar
  50. 50.
    Bencina M, Babic J, Podgornik A (2007) J Chromatogr. A 1144:135–142Google Scholar
  51. 51.
    Wong AKY, Krull UJ (2005) Anal Bioanal Chem 383:187–200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations