Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 6, pp 1569–1576 | Cite as

Halogenated molecularly imprinted polymers for selective determination of carbaryl by phosphorescence measurements

  • Adrián Alvarez-Diaz
  • José M. Costa
  • Rosario Pereiro
  • Alfredo Sanz-MedelEmail author
Technical Note

Abstract

A highly selective molecularly imprinted polymer (MIP) for the recognition of the pesticide carbaryl in water has been synthesized using halogenated bisphenol A compounds as one of the polymeric precursors and carbaryl as the template molecule. On the basis of the heavy-atom effect, both the brominated and the iodinated MIPs allowed analyte detection by room-temperature-phosphorescence measurements. In the presence of an oxygen scavenger (sodium sulphite) the halide, included in the polymeric structure, induced efficient room-temperature phosphorescence of the analyte (once it had been selectively retained by the MIP). The MIP cavity can be easily regenerated for subsequent sample injections with 2 mL methanol. The optosensing system developed has demonstrated high selectivity for carbaryl, even in the presence of other luminophores that could be unspecifically adsorbed onto the MIP surface. Under optimal experimental conditions, the detection limit for the target molecule was 4 µg/L (3-mL sample injection volume), and the linear range extended up to 1 mg/L of the analyte. Good reproducibility was achieved (a relative standard deviation of 3% was obtained for ten replicates of 150 µg/L carbaryl). The synthesized sensing material showed good stability for at least 3 months after preparation. Finally, the applicability to carbaryl determination in real samples was evaluated through the successful determination of the pesticide in spiked mineral and tap water samples.

Figure

Schematic diagram of carbaryl recognition process by an halogenated molecularly imprinted polymer for room temperature phosphorescence detection of the analyte.

Keywords

Carbaryl Molecular imprinting Room-temperature phosphorescence Biomimetic optosensing Water analysis 

Notes

Acknowledgements

Financial support from the projects MMA-06–669/2006/3–11.5 (Secretaría General para la Prevención de la Contaminación y el Cambio Climático del Ministerio de Medio Ambiente, Spain) and CTQ-2006–02309-BQU (Ministry of Education and Science, Spain) is gratefully acknowledged. A.Á.D. thanks the regional Ministry of Education of Asturias, Spain, for a PhD grant (BP07–061).

References

  1. 1.
    Roig B, Allan IJ, Greenwood R (eds) (2005) A toolbox of existing and emerging methods for water monitoring under the WFD. http://www.swift-wfd.com/Local/swift/dir/doc/WP1_OM mai 2005 version public.pdf
  2. 2.
    Nunes GS, Marco MP, Ribeiro ML, Barceló D (1998) J Chromatogr A 823:109–120CrossRefGoogle Scholar
  3. 3.
    King JW, Zhang Z (2002) Anal Bioanal Chem 374:88–92CrossRefGoogle Scholar
  4. 4.
    Capitán-Vallvey LF, Deheidel MKA, de Orbe I, Avidad R (1999) Analyst 124:49–53CrossRefGoogle Scholar
  5. 5.
    Pacioni NL, Veglia AV (2003) Anal Chim Acta 488:193–202CrossRefGoogle Scholar
  6. 6.
    García-Reyes JF, Llorent-Martínez EJ, Ortega-Barrales P, Molina-Díaz A (2004) Talanta 64:742–749CrossRefGoogle Scholar
  7. 7.
    Ghauch A (2000) Fresenius J Anal Chem 367:545–550CrossRefGoogle Scholar
  8. 8.
    Segura-Carretero A, Cruces-Blanco C, Cañabate-Díaz B, Fernández-Sánchez JF, Fernández-Gutiérrez A (2000) Anal Chim Acta 417:19–30CrossRefGoogle Scholar
  9. 9.
    Holthoff EL, Bright FV (2007) Anal Chim Acta 594:147–161CrossRefGoogle Scholar
  10. 10.
    Sánchez-Barragán I, Karim K, Costa-Fernández JM, Piletsky SA, Sanz-Medel A (2007) Sens Actuators B 123:798–804CrossRefGoogle Scholar
  11. 11.
    Sanchez-Barragán I, Costa-Fernández JM, Pereiro R, Sanz-Medel A, Salinas A, Segura A, Fernández-Gutiérrez A, Ballesteros A, González JM (2005) Anal Chem 77:7005–7011CrossRefGoogle Scholar
  12. 12.
    Traviesa-Álvarez JM, Sánchez-Barragán I, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2007) Analyst 132:218–223CrossRefGoogle Scholar
  13. 13.
    Barluenga J, García-Martín MA, González JM, Clapés P, Valencia G (1996) Chem Commun 1505–1506Google Scholar
  14. 14.
    Yip WT, Levy DH (1996) J Phys Chem 100:11539–11545CrossRefGoogle Scholar
  15. 15.
    Díaz-García ME, Sanz-Medel A (1986) Anal Chem 58:1436–1440CrossRefGoogle Scholar
  16. 16.
    Addison JB, Semeluk GP, Unger I (1977) J Lumin 15:323–339CrossRefGoogle Scholar
  17. 17.
    Galeano-Díaz T, Guiberteau A, Ortiz-Burguillos JM, Salinas F (1997) Analyst 122:513–517CrossRefGoogle Scholar
  18. 18.
    Piccirilli GN, Escandar GM (2007) Anal Chim Acta 601:196–203CrossRefGoogle Scholar
  19. 19.
    Muñoz de la Peña A, Mahedero MC, Espinosa-Mansilla A, Bautista Sánchez A, Reta M (1999) Talanta 48:15–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Adrián Alvarez-Diaz
    • 1
  • José M. Costa
    • 1
  • Rosario Pereiro
    • 1
  • Alfredo Sanz-Medel
    • 1
    Email author
  1. 1.Department of Physical and Analytical Chemistry, Faculty of ChemistryUniversity of OviedoOviedoSpain

Personalised recommendations