Analytical and Bioanalytical Chemistry

, Volume 394, Issue 1, pp 245–254

Reactive desorption electrospray ionization mass spectrometry (DESI-MS) of natural products of a marine alga

  • Leonard Nyadong
  • Edward G. Hohenstein
  • Asiri Galhena
  • Amy L. Lane
  • Julia Kubanek
  • C. David Sherrill
  • Facundo M. Fernández
Original Paper

Abstract

Presented here is the optimization and development of a desorption electrospray ionization mass spectrometry (DESI-MS) method for detecting natural products on tissue surfaces. Bromophycolides are algal diterpene-benzoate macrolide natural products that have been shown to inhibit growth of the marine fungal pathogen Lindra thalassiae. As such, they have been implicated in antimicrobial chemical defense. However, the defense mechanisms are not yet completely understood. Precise detection of these compounds on algal tissue surfaces under ambient conditions without any disruptive sample processing could shed more light onto the processes involved in chemical defense of marine organisms. Conventional DESI-MS directly on algal tissue showed relatively low sensitivity for bromophycolide detection. Sensitivity was greatly improved by the addition of various anions including Cl, Br, and CF3COO into the DESI spray solvent. Chloride adduction gave the highest sensitivity for all assayed anions. Density functional optimization of the bromophycolide anionic complexes produced during DESI supported this observation by showing that the chloride complex has the most favorable binding energy. Optimized DESI protocols allowed the direct and unambiguous detection of bromophycolides, including A, B, and E, from the surface of untreated algal tissue.

Figure

Desorption Electrospray Ionization, a novel technique for mass spectrometric analysis under open air conditions reveals the presence of naturally-occurring antibiotics on the surface of marine algae. Ab-initio calculations and experimental results indicate that sensitiviity could be greatly enhanced by means of dynamic complexation of these antibiotics with various small anions during the dynamic desorption process.

Keywords

Desorption electrospray ionization Mass spectrometry Direct analysis Natural products 

Supplementary material

216_2009_2674_MOESM1_ESM.doc (90 kb)
Figure S-1DESI-MS5 spectra of pure bromophycolides, a bromophycolide A, b bromophycolide B (DOC 90.0 KB)
216_2009_2674_MOESM2_ESM.doc (24 kb)
Figure S-2Effect of ion source collision induced dissociation energy in the multipole region for various DC offset voltages on the intensity of various bromophycolide A ionic species including: [bromophycolide A–HBr–H] at m/z 583, [bromophycolide A–H] at m/z 665 and [2 bromophycolide A–H] at m/z 1,329. The intensity values were normalized to that of the maximum observed (DOC 23.5 KB)
216_2009_2674_MOESM3_ESM.doc (28 kb)
Figure S-3Signal-to-noise ratios observed for various bromophycolide species obtained from the DESI-MS analysis of pure bromophycolides (10 μL, 1 mg/mL) deposited on PTFE, (1 and 2) spraying with a solution of 100% MeOH (3, 4 and 5), spraying with a solution of methanol containing various anions including: chloride (100 μM), bromide (10 μM), and trifluoroacetate (135 μM), respectively (DOC 28.5 KB)
216_2009_2674_MOESM4_ESM.doc (332 kb)
Figure S-4Geometries of: a bromophycolide B and its complexes with b Cl, c Br, and d CF3COO optimized at the B3LYP-D/6-31+G* level of theory (DOC 332 KB)
216_2009_2674_MOESM5_ESM.doc (426 kb)
Figure S-5Geometries of: a bromophycolide E and its complexes with b Cl, c Br, and d CF3COO optimized at the B3LYP-D/6-31+G* level of theory (DOC 425 KB)

References

  1. 1.
    Chen HW, Talaty NN, Takats Z, Cooks RG (2005) Anal Chem 77:6915–6927CrossRefGoogle Scholar
  2. 2.
    Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Science 311:1566–1570CrossRefGoogle Scholar
  3. 3.
    Cotte-Rodriguez I, Takats Z, Talaty N, Chen HW, Cooks RG (2005) Anal Chem 77:6755–6764CrossRefGoogle Scholar
  4. 4.
    Nyadong L, Green MD, De Jesus VR, Newton PN, Fernandez FM (2007) Anal Chem 79:2150–2157CrossRefGoogle Scholar
  5. 5.
    Takats Z, Cotte-Rodriguez I, Talaty N, Chen HW, Cooks RG (2005) Chem Commun 1950–1952Google Scholar
  6. 6.
    Takats Z, Wiseman JM, Cooks RG (2005) J Mass Spectrom 40:1261–1275CrossRefGoogle Scholar
  7. 7.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Science 306:471–473CrossRefGoogle Scholar
  8. 8.
    Van Berkel GJ, Ford MJ, Deibel MA (2005) Anal Chem 77:1207–1215CrossRefGoogle Scholar
  9. 9.
    Williams JP, Patel VJ, Holland R, Scrivens JH (2006) Rapid Commun Mass Spectrom 20:1447–1456CrossRefGoogle Scholar
  10. 10.
    Cody RB, Laramee JA, Durst HD (2005) Anal Chem 77:2297–2302CrossRefGoogle Scholar
  11. 11.
    Shiea J, Huang MZ, HSu HJ, Lee CY, Yuan CH, Beech I, Sunner J (2005) Rapid Commun Mass Spectrom 19:3701–3704CrossRefGoogle Scholar
  12. 12.
    McEwen CN, McKay RG, Larsen BS (2005) Anal Chem 77:7826–7831CrossRefGoogle Scholar
  13. 13.
    Rezenom YH, Dong J, Murray KK (2008) Analyst 133:226–232CrossRefGoogle Scholar
  14. 14.
    Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM (2008) Anal Chem 80:2654–2663CrossRefGoogle Scholar
  15. 15.
    Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM (2008) Anal Chem 80:2646–2653CrossRefGoogle Scholar
  16. 16.
    Shin YS, Drolet B, Mayer R, Dolence K, Basile F (2007) Anal Chem 79:3514–3518CrossRefGoogle Scholar
  17. 17.
    Kauppila TJ, Talaty N, Jackson AU, Kotiaho T, Kostiainen R, Cooks RG (2008) Chem Commun 2674–2676Google Scholar
  18. 18.
    Bereman MS, Williams TI, Muddiman DC (2007) Anal Chem 79:8812–8815CrossRefGoogle Scholar
  19. 19.
    D’Agostino PA, Hancock JR, Chenier CL, Lepage CRJ (2006) J Chromatogr A 1110:86–94CrossRefGoogle Scholar
  20. 20.
    Nyadong L, Green MD, De Jesus VR, Newton PN, Fernandez FM (2007) Anal Chem 79:2150–2157CrossRefGoogle Scholar
  21. 21.
    Ifa DR, Wiseman JM, Song QY, Cooks RG (2007) Int J Mass Spectrom 259:8–15CrossRefGoogle Scholar
  22. 22.
    Kertesz V, Van Berkel GJ, Vavrek M, Koeplinger KA, Schneider BB, Covey TR (2008) Anal Chem 80:5168–5177CrossRefGoogle Scholar
  23. 23.
    Kertesz V, van Berkel GJ (2008) Anal Chem 80:1027–1032CrossRefGoogle Scholar
  24. 24.
    Kertesz V, Van Berkel GJ (2008) Rapid Commun Mass Spectrom 22:2639–2644CrossRefGoogle Scholar
  25. 25.
    Justes DR, Talaty N, Cotte-Rodriguez I, Cooks RG (2007) Chem Commun 2142–2144Google Scholar
  26. 26.
    Williams JP, Scrivens JH (2005) Rapid Commun Mass Spectrom 19:3643–3650CrossRefGoogle Scholar
  27. 27.
    Weston DJ, Bateman R, Wilson ID, Wood TR, Creaser CS (2005) Anal Chem 77:7572–7580CrossRefGoogle Scholar
  28. 28.
    Hu QZ, Talaty N, Noll RJ, Cooks RG (2006) Rapid Commun Mass Spectrom 20:3403–3408CrossRefGoogle Scholar
  29. 29.
    Talaty N, Takats Z, Cooks RG (2005) Analyst 130:1624–1633CrossRefGoogle Scholar
  30. 30.
    Jackson AT, Williams JP, Scrivens JH (2006) Rapid Commun Mass Spectrom 20:2717–2727CrossRefGoogle Scholar
  31. 31.
    Williams JP, Hilton GR, Thalassinos K, Jackson AT, Scrivens JH (2007) Rapid Commun Mass Spectrom 21:1693–1704CrossRefGoogle Scholar
  32. 32.
    Bereman MS, Nyadong L, Fernandez FM, Muddiman DC (2006) Rapid Commun Mass Spectrom 20:3409–3411CrossRefGoogle Scholar
  33. 33.
    Chen HW, Pan ZZ, Talaty N, Raftery D, Cooks RG (2006) Rapid Commun Mass Spectrom 20:1577–1584CrossRefGoogle Scholar
  34. 34.
    Costa AB, Cooks RG (2007) Chem Commun 3915–3917Google Scholar
  35. 35.
    Kubanek J, Prusak AC, Snell TW, Giese RA, Fairchild CR, Aalbersberg W, Hay ME (2006) J Nat Prod 69:731–735CrossRefGoogle Scholar
  36. 36.
    Kubanek J, Prusak AC, Snell TW, Giese RA, Hardcastle KI, Fairchild CR, Aalbersberg W, Raventos-Suarez C, Hay ME (2005) Org Lett 7:5261–5264CrossRefGoogle Scholar
  37. 37.
    Nyadong L, Hohenstein EG, Johnson K, Sherrill CD, Green MD, Fernández FM (2008) Analyst 133:1513–1522CrossRefGoogle Scholar
  38. 38.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  39. 39.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–556CrossRefGoogle Scholar
  40. 40.
    Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA Jr., Lochan RC, Wang T, Beran GJ, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EF, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL 3rd, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF 3rd, Kong J, Krylov AI, Gill PM, Head-Gordon M (2006) Phys Chem Chem Phys 8:3172–3191CrossRefGoogle Scholar
  41. 41.
    Jaguar 55, Schrodinger, LLC, Portland, Oregon, 2003Google Scholar
  42. 42.
    Lane AL, Stout EP, Hay ME, Prusak AC, Hardcastle K, Fairchild CR, Franzblau SG, Le Roch K, Prudhomme J, Aalbersberg W, Kubanek J (2007) J Org Chem 72:7343–7351CrossRefGoogle Scholar
  43. 43.
    Lane AL, Nyadong L, Galhena A, Stout EP, Parry RM, Wang MD, Hay ME, Fernández FM, Kubanek J (2009) Surface-mediated antifungal chemical defenses in a tropical seaweed. Proc Natl Acad Sci USAGoogle Scholar
  44. 44.
    Prien JM, Huysentruyt LC, Ashline DJ, Lapadula AJ, Seyfried TN, Reinhold VN (2008) Glycobiology 18:353–366CrossRefGoogle Scholar
  45. 45.
    Marotta E, Bosa E, Scorrano G, Paradisi C (2005) Rapid Commun Mass Spectrom 19:391–396CrossRefGoogle Scholar
  46. 46.
    Marotta E, Paradisi C (2005) J Mass Spectrom 40:1583–1589CrossRefGoogle Scholar
  47. 47.
    Nefliu M, Cooks RG, Moore C (2006) J Am Soc Mass Spectrom 17:1091–1095CrossRefGoogle Scholar
  48. 48.
    Cotte-Rodriguez I, Hernandez-Soto H, Chen H, Cooks RG (2008) Anal Chem 80:1512–1519CrossRefGoogle Scholar
  49. 49.
    Cotte-Rodriguez I, Chen H, Cooks RG (2006) Chem Commun 953–955Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Leonard Nyadong
    • 1
  • Edward G. Hohenstein
    • 1
  • Asiri Galhena
    • 1
  • Amy L. Lane
    • 1
  • Julia Kubanek
    • 1
    • 2
  • C. David Sherrill
    • 1
  • Facundo M. Fernández
    • 1
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of BiologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations