Advertisement

Analytical and Bioanalytical Chemistry

, Volume 394, Issue 5, pp 1261–1272 | Cite as

Synthesis, characterisation and chromatographic evaluation of polyether dendrimer stationary phases

  • Gerard P. O’Sullivan
  • Norma M. Scully
  • Jean-Marie Prat
  • Jeremy D. Glennon
  • Benjamin Dietrich
  • Volker Friebolin
  • Klaus Albert
Original Paper

Abstract

Supercritical carbon dioxide has attracted attention as a potential replacement for traditional organic solvents due to its simplified workup procedures and reduced environmental impact—providing a green chemistry approach for organic solvent-free functionalisation. In addition to the environmental benefits, the enhanced diffusivity observed in supercritical solvents can often enhance reaction rates. We have applied these valuable features to the preparation of silica-bonded stationary phases and examined their potential in liquid chromatography. We report the successful preparation and characterisation of polyether silica based on Frechet dendrimers—this significantly enhances the range of stationary-phase chemistries that can be prepared in supercritical fluids. First- and second-generation polyether silicas were prepared, characterised, end-capped and evaluated for use as stationary phases for liquid chromatography.

Figure

SRM1649 on 2nd generation polyether silica

Keywords

Polyether stationary phases Frechet dendrimer Supercritical carbon dioxide Silica functionalisation 

Notes

Acknowledgments

GOS and NS thank IRCSET (the Irish Research Council for Science, Engineering and Technology) for EMBARK Postgraduate Research Scholarships. We thank Dr. Uwe Neue (Waters Corporation, USA) for donation of silica, Drs. Catherine Rimmer and Lane Sander (NIST) for provision of standard reference materials 869a and 1647e, and Waters Technologies, Ireland for assistance with column packing. We thank Dr. Dave Cocker (UCC) for advice and equipment which aided immeasurably in the preparation of the polyether substrates.

Supplementary material

216_2009_2670_MOESM1_ESM.pdf (339 kb)
(PDF 339 KB)

References

  1. 1.
    Healy LO, Owens VP, O’Mahony T, Srijaranai S, Holmes JD, Glennon JD, Fischer G, Albert K (2003) Anal Chem 75:5860–5869CrossRefGoogle Scholar
  2. 2.
    Yarita T, Nomura A, Horimoto Y (1996) J Chromatogr A 724:373–377CrossRefGoogle Scholar
  3. 3.
    Yarita T, Ihara T, Horimoto Y, Nomura A (1999) Anal Sci 15:377–380CrossRefGoogle Scholar
  4. 4.
    McCool B, Tripp CP (2005) J Phys Chem B 109:8914–8919CrossRefGoogle Scholar
  5. 5.
    Zemanian TS, Fryxell GE, Liu J, Mattigod S, Franz J, Nie Z (2001) Langmuir 17:8172–8177CrossRefGoogle Scholar
  6. 6.
    Doneanu A, Chirica GS, Remcho VT (2002) J Sep Sci 25:1252–1256CrossRefGoogle Scholar
  7. 7.
    Taranekar P, Park J-Y, Patton D, Fulghum T, Ramon GJ, Advincula R (2006) Adv Mater 18:2461–2465CrossRefGoogle Scholar
  8. 8.
    Dendritech Inc. Dendrimer applications. http://www.dendritech.com/applications.html. Accessed 4th April 2008
  9. 9.
    Taranekar P, Baba A, Park JY, Fulghum TM, Advincula R (2006) Adv Funct Mater 16:2000–2007CrossRefGoogle Scholar
  10. 10.
    Najlah M, D’Emanuele A (2006) Curr Opin Pharmacol 6:522–527CrossRefGoogle Scholar
  11. 11.
    Gross M (2007) Chem World 62–66Google Scholar
  12. 12.
    Hawker CJ, Frechet JMJ (1990) J Am Chem Soc 112:7638–7647CrossRefGoogle Scholar
  13. 13.
    Kawa M, Frechet JMJ (1998) Chem Mater 10:286–296CrossRefGoogle Scholar
  14. 14.
    Tully DC, Trimble AR, Frechet JMJ, Wilder K, Quate CF (1999) Chem Mater 11:2892–2898CrossRefGoogle Scholar
  15. 15.
    Tully DC, Wilder K, Frechet JMJ, Trimble AR, Quate CF (1999) Adv Mater 11:314–318CrossRefGoogle Scholar
  16. 16.
    Antoni P, Nyström D, Hawker CJ, Hult A, Malkoch M (2007) Chem Commun 2249–2251Google Scholar
  17. 17.
    Chouai A, Simanek EE (2008) J Org Chem 73:2357–2366CrossRefGoogle Scholar
  18. 18.
    Guo ZX, Yu J (2002) J Mater Chem 12:468–472CrossRefGoogle Scholar
  19. 19.
    Chao HC, Hanson JE (2002) J Sep Sci 25:345–350CrossRefGoogle Scholar
  20. 20.
    Tucker SA, Jernigan T, Turner JM (2006) In: 231st ACS National MeetingGoogle Scholar
  21. 21.
    Swali V, Wells NJ, Langley J, Bradley M (1997) J Org Chem 62:4092–4093CrossRefGoogle Scholar
  22. 22.
    Lei S, Yu S, Li Q, Yang Y (2001) Chinese J Anal Chem 29:1129–1134Google Scholar
  23. 23.
    Sakai K, Teng TC, Katada A, Harada T, Yoshida K, Yamanaka K, Asami Y, Sakata M, Hirayama C, Kunitake M (2003) Chem Mater 15:4091–4097CrossRefGoogle Scholar
  24. 24.
    Qu R, Niu Y, Sun C, Ji C, Wang C, Cheng G (2007) Microporous Mesoporous Mater 97:58–65CrossRefGoogle Scholar
  25. 25.
    Zweni PP, Alper H (2006) Adv Synth Catal 348:725–731CrossRefGoogle Scholar
  26. 26.
    Li R, Bu J (2004) Korean J Chem Eng 21:98–103CrossRefGoogle Scholar
  27. 27.
    Castagnola M, Zuppi C, Rossetti DV, Vincenzoni F, Lupi A, Vitali A, Meucci E, Messana I (2002) Electrophoresis 23:1769–1778CrossRefGoogle Scholar
  28. 28.
    Maichel B, Kenndler E (2000) Electrophoresis 21:3160–3173CrossRefGoogle Scholar
  29. 29.
    Tanaka N, Iwasaki H, Fukutome T, Hosoya K, Araki T (1997) J High Resolut Chromatogr 20:529–538CrossRefGoogle Scholar
  30. 30.
    Peric I, Kenndler E (2003) Electrophoresis 24:2924–2934CrossRefGoogle Scholar
  31. 31.
    Zhang ZS, Yang Y (2006) Chem J Chin Univ 27:47–51Google Scholar
  32. 32.
    Guo B-J, Yang Y, Su P (2007) Chem J Chin Univ 28:1267–1269Google Scholar
  33. 33.
    Newkome GR, Yoo KS, Kabir A, Malik A (2001) Tetrahedron Lett 42:7537–7541CrossRefGoogle Scholar
  34. 34.
    Kabir A, Hamlet C, Soo Yoo K, Newkome GR, Malik A (2004) J Chromatogr A 1034:1–11CrossRefGoogle Scholar
  35. 35.
    Blokhina SV, Usol’tseva NV, Ol’khovich MV, Sharapova AV (2007) J Anal Chem 62:559–563CrossRefGoogle Scholar
  36. 36.
    Rosenholm JM, Duchanoy A, Lindén M (2008) Chem Mater 20:1126–1133CrossRefGoogle Scholar
  37. 37.
    Driffield M, Goodall DM, Klute AS, Smith DK, Wilson D (2002) Langmuir 18:8660–8665CrossRefGoogle Scholar
  38. 38.
    Driffield M, Goodall DM, Smith DK (2003) Org Biomol Chem 1:2612–2620CrossRefGoogle Scholar
  39. 39.
    Mathews BT, Beezer AE, Snowden MJ, Hardy MJ, Mitchell JC (2001) New J Chem 25:807–818CrossRefGoogle Scholar
  40. 40.
    Mathews BT, Beezer AE, Snowden MJ, Hardy MJ, Mitchell JC (2001) Chromatographia 53:147–155CrossRefGoogle Scholar
  41. 41.
    Muralidharan S, Zhuang J, Ma H (2002) Chiral separations with novel tryptophan dendrimers. In: 223rd ACS National MeetingGoogle Scholar
  42. 42.
    Henrie SA, Barnett MJ (2005) Development of a branched chiral selector stationary phase. In: 229th ACS National MeetingGoogle Scholar
  43. 43.
    Huang SH, Li SR, Bai ZW, Pan ZQ, Yin CQ (2006) Chromatographia 64:641–646CrossRefGoogle Scholar
  44. 44.
    Ling FH, Lu V, Svec F, Frechet JMJ (2002) J Org Chem 67:1993–2002CrossRefGoogle Scholar
  45. 45.
    Kehat T, Goren K, Portnoy M (2007) New J Chem 31:1218–1242CrossRefGoogle Scholar
  46. 46.
    Cooper AI, Londono JD, Wignall G, McClain JB, Samulski ET, Lin JS, Dobrynin A, Rubinstein M, Burke ALC, Frechet JMJ, DeSimone JM (1997) Nature 389:368–371CrossRefGoogle Scholar
  47. 47.
    Yeung LK, Lee T, Jr., Johnston KP, Crooks RM (2001) Chem Commun 2290–2291Google Scholar
  48. 48.
    Scully NM, Healy LO, O’Mahony T, Glennon JD, Dietrich B, Albert K (2008) J Chromatogr A 1191:99–107CrossRefGoogle Scholar
  49. 49.
    Robson MM, Dmoch R, Bromilow I, Bartle KD, Myers P (1999) High Press Chem Eng 62:43–46Google Scholar
  50. 50.
    Scully NM, O’Sullivan GP, Healy LO, Glennon JD, Dietrich B, Albert K (2007) J Chromatogr A 1156:68–74CrossRefGoogle Scholar
  51. 51.
    Sealey KE, Robson MM, Myers P, Bartle KD (2008) Sep Sci 0:31–34Google Scholar
  52. 52.
    Bo Z, Zhang X, Yi XB, Yang ML, Shen JC, Rehn YH, Xi SQ (1997) Polymer Bulletin 38:257–264CrossRefGoogle Scholar
  53. 53.
    Lepore SD, He Y (2003) Journal of Organic Chemistry 8261–8263Google Scholar
  54. 54.
    Sandoval JE (1999) J Chromatogr A 852:375–381CrossRefGoogle Scholar
  55. 55.
    van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1956) Chem Eng Sci 5:271–289CrossRefGoogle Scholar
  56. 56.
    Tsubokawa N, Ichioka H, Satoh T, Hayashi S, Fujiki K (1998) React Funct Polym 37:75–82CrossRefGoogle Scholar
  57. 57.
    Acosta EJ, Gonzalez SO, Simanek EE (2005) J Polym Sci A Polym Chem 43:168–177CrossRefGoogle Scholar
  58. 58.
    Albert K (2003) J Sep Sci 26:215–224CrossRefGoogle Scholar
  59. 59.
    Dietrich B, Holtin K, Bayer M, Friebolin V, Kühnle M, Albert K (2008) Anal Bioanal Chem 391:2627–2633CrossRefGoogle Scholar
  60. 60.
    Sander LC, Wise SA (1993) J Chromatogr A 656:335–351CrossRefGoogle Scholar
  61. 61.
    Sander LC, Wise S (1995) Anal Chem 67:3284–3292CrossRefGoogle Scholar
  62. 62.
    Sander LC, Lippa KA, Wise SA (2005) Anal Bioanal Chem 342:646–688CrossRefGoogle Scholar
  63. 63.
    Kayillo S, Dennis GR, Shalliker RA (2006) J Chromatogr A 1126:283–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gerard P. O’Sullivan
    • 1
  • Norma M. Scully
    • 1
  • Jean-Marie Prat
    • 1
  • Jeremy D. Glennon
    • 1
  • Benjamin Dietrich
    • 2
  • Volker Friebolin
    • 2
  • Klaus Albert
    • 2
  1. 1.Department of Chemistry, Analytical and Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland
  2. 2.Institüt für Organische ChemieUniversität TübingenTübingenGermany

Personalised recommendations