Chlamydomonas reinhardtii genetic variants as probes for fluorescence sensing system in detection of pollutants

  • V. Scognamiglio
  • D. Raffi
  • M. Lambreva
  • G. Rea
  • A. Tibuzzi
  • G. Pezzotti
  • U. Johanningmeier
  • M. T. Giardi
Original Paper

Abstract

The unicellular green alga Chlamydomonas reinhardtii is employed here for the setup of a biosensor demonstrator based on multibiomediators for the detection of herbicides. The detection is based on the activity of photosystem II, the multienzymatic chlorophyll–protein complex located in the thylakoid membrane that catalyzes the light-dependent photosynthetic primary charge separation and the electron transfer chain in cyanobacteria, algae, and higher plants. Several C. reinhardtii mutants modified on the D1 photosystem II protein are generated by site-directed mutagenesis and experimentally tested for the development of a biosensor revealing the modification of the fluorescence parameter (1 − V J) in the presence of herbicides. The A250R, A250L, A251C, and I163N mutants are highly sensitive to the urea and triazine herbicide classes; the newly generated F255N mutant is shown to be especially resistant to the class of urea. It follows that the response of the multibiomediators is associated to a particular herbicide subclass and can be useful to monitor several species of pollutants.

Keywords

Chlamydomonas reinhardtii Site-directed mutagenesis Biomediator Biosensor Pollutants Fluorescence 

Notes

Acknowledgments

This work was partially supported by a grant from MIUR Art. 297, “AGROBIOSENS” project, and partially by the EU FP7-SME-2008-1 project “BEEP-C-EN” for the benefit of SMEs. The biosensor instrument was adapted from an ASI (Italian Space Agency) space flight prototype in a Space–Earth technology transfer process.

References

  1. 1.
    Giardi MT, Pace E (2005) Trends Biotech 25:253–267Google Scholar
  2. 2.
    Giardi MT, Rigoni F, Barbato R (1992) Plant Physiol 100:1948–1954CrossRefGoogle Scholar
  3. 3.
    Oettmeier W (1999) Cell Mol Life Sci 10:1255–77CrossRefGoogle Scholar
  4. 4.
    Vermaas WFJ, Renger G, Arntzen CJ (1984) Z Natureforsch 39C:368–373Google Scholar
  5. 5.
    Johanningmeier U (1993) Plant Mol Biol 22:91–99CrossRefGoogle Scholar
  6. 6.
    Tibuzzi A, Rea G, Pezzotti G, Esposito D, Johanningmeier U, Giardi MT (2007) J Phys Condens Matter 19:395006–395018CrossRefGoogle Scholar
  7. 7.
    Strasser BJ, Strasser RJ (1995) In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic, DordrechtGoogle Scholar
  8. 8.
    Harris EH (1989) In The Chlamydomonas sourcebook: A comprehensive Guide to biology and laboratory use E. Harris Ed., pp. 25–66, Academic Press, San Antonio (ISBN 0-12.326880)Google Scholar
  9. 9.
    Johanningmeier U, Sopp G, Brauner M, Altenfeld U, Orawski G, Oettmeier W (2000) Pestic Biochem Physiol 66:9–19CrossRefGoogle Scholar
  10. 10.
    Preiss S, Schrader S, Johanningmeier U (2001) Eur J Biochem 268:4562–4569CrossRefGoogle Scholar
  11. 11.
    Misra AN, Srivastava A, Strasser RJ (2001) J Plant Physiol 158:1173–1181CrossRefGoogle Scholar
  12. 12.
    Christensen MG, Teicher HB, StreibigJens C (2003) Pest Manag Sci 59:1303–1310CrossRefGoogle Scholar
  13. 13.
    Koblizek M, Maly J, Masojidek J, Komenda J, Kucera T, Giardi MT, Mattoo AK, Pilloton R (2002) Biotechnol Bioeng 78:110–116CrossRefGoogle Scholar
  14. 14.
    Wilski S, Johanningmeier U, Herte S, Oettmeier W (2006) Pestic Biochem Physiol 84:157–164CrossRefGoogle Scholar
  15. 15.
    Govindjee (1995) J Plant Physiol 22:131–160Google Scholar
  16. 16.
    Govindjee, Seufferheld MJ (2002) Funct Plant Biol 29:1141–1155CrossRefGoogle Scholar
  17. 17.
    Maxwell K, Johnson GN (2000) J Exp Bot 51:659–668CrossRefGoogle Scholar
  18. 18.
    Giardi MT, Esposito D, Leonardi C, Mattoo A, Margonelli A, Angeli G (2006) EU patent 01830148.1-2204Google Scholar
  19. 19.
    Giardi MT, Pace E (2006) Biotechnological application of photosynthetic proteins: biochips, biosensors and biodevices. Landes Bioscience, Austin, pp 147–154CrossRefGoogle Scholar
  20. 20.
    Campanella L, Cubadda F, Sammartino M, Saoncella A (2000) Water Res 35(1):69–76CrossRefGoogle Scholar
  21. 21.
    Durrieu C, Tran-Minh C, Chovelon JM, Barthet L, Chouteau1 C, Védrine C (2006) J Appl Phys 36:205–209Google Scholar
  22. 22.
    Podola B, Podola M (2003) J Appl Phycol 15(5):415–424CrossRefGoogle Scholar
  23. 23.
    Touloupakis E, Giannoudi L, Piletsky SA, Guzzella L, Pozzoni F, Giardi MT (2005) Biosens Bioelectron 20(10):1984–1992CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • V. Scognamiglio
    • 1
  • D. Raffi
    • 1
  • M. Lambreva
    • 1
  • G. Rea
    • 1
  • A. Tibuzzi
    • 1
    • 2
  • G. Pezzotti
    • 2
  • U. Johanningmeier
    • 3
  • M. T. Giardi
    • 1
  1. 1.Department of Agrofood, CNRInstitute of CrystallographyRomeItaly
  2. 2.Biosensor SrlPalombara SabinaItaly
  3. 3.Institute of Plant PhysiologyMartin Luther Universität Halle WittenbergHalleGermany

Personalised recommendations