Analytical and Bioanalytical Chemistry

, Volume 393, Issue 6–7, pp 1629–1638 | Cite as

Sensitive and highly specific quantitative real-time PCR and ELISA for recording a potential transfer of novel DNA and Cry1Ab protein from feed into bovine milk

  • Patrick Guertler
  • Vijay Paul
  • Christiane Albrecht
  • Heinrich H. D. Meyer
Original Paper

Abstract

To address food safety concerns of the public regarding the potential transfer of recombinant DNA (cry1Ab) and protein (Cry1Ab) into the milk of cows fed genetically modified maize (MON810), a highly specific and sensitive quantitative real-time PCR (qPCR) and an ELISA were developed for monitoring suspicious presence of novel DNA and Cry1Ab protein in bovine milk. The developed assays were validated according to the assay validation criteria specified in the European Commission Decision 2002/657/EC. The detection limit and detection capability of the qPCR and ELISA were 100 copies of cry1Ab μL−1 milk and 0.4 ng mL−1 Cry1Ab, respectively. Recovery rates of 84.9% (DNA) and 97% (protein) and low (<15%) imprecision revealed the reliable and accurate estimations. A specific qPCR amplification and use of a specific antibody in ELISA ascertained the high specificity of the assays. Using these assays for 90 milk samples collected from cows fed either transgenic (n = 8) or non-transgenic (n = 7) rations for 6 months, neither cry1Ab nor Cry1Ab protein were detected in any analyzed sample at the assay detection limits.

Figure

Schematic formats for quantitative real-time PCR and ELISA for the quantification of cry1Ab DNA and Cry1Ab protein

Keywords

Bovine milk ELISA MON810 Quantitative real-time PCR Validation 

References

  1. 1.
    Hofte H, Whiteley HR (1989) Microbiol Rev 53:242–255Google Scholar
  2. 2.
    James C (2008) ISAAA Brief No. 37Google Scholar
  3. 3.
    (2003) Official Journal of the European UnionGoogle Scholar
  4. 4.
    Hupfer C, Hotzel H, Sachse K, Engel K-H (1997) Eur Food Res Technol 205:442–445Google Scholar
  5. 5.
    Michelini E, Simoni P, Cevenini L, Mezzanotte L, Roda A (2008) Anal Bioanal Chem 392:355–367CrossRefGoogle Scholar
  6. 6.
    Peano C, Samson MC, Palmieri L, Gulli M, Marmiroli N (2004) J Agric Food Chem 52:6962–6968CrossRefGoogle Scholar
  7. 7.
    Vaitilingom M, Pijnenburg H, Gendre F, Brignon P (1999) J Agric Food Chem 47:5261–5266CrossRefGoogle Scholar
  8. 8.
    Marmiroli N, Maestri E, Gulli M, Malcevschi A, Peano C, Bordoni R, De BG (2008) Anal Bioanal Chem 392:369–384CrossRefGoogle Scholar
  9. 9.
    Agodi A, Barchitta M, Grillo A, Sciacca S (2006) Int J Hyg Environ Health 209:81–88CrossRefGoogle Scholar
  10. 10.
    Phipps RH, Beever DE, Humphries DJ (2002) Lives Prod Sci 74:269–273CrossRefGoogle Scholar
  11. 11.
    Poms RE, Hochsteiner W, Luger K, Glossl J, Foissy H (2003) J Food Prot 66:304–310Google Scholar
  12. 12.
    Einspanier R, Andreas K, Jana K, Karen A, Rita P, Fredi S, Gerhard J, Gerhard F (2001) Eur Food Res Technol V212:129–134CrossRefGoogle Scholar
  13. 13.
    Calsamiglia S, Hernandez B, Hartnell GF, Phipps R (2007) J Dairy Sci 90:4718–4723CrossRefGoogle Scholar
  14. 14.
    Swiss Food Manual (2004) Eidgenössische Drucksachen- und Materialienzentrale, BernGoogle Scholar
  15. 15.
    Mitchell JA, Brooks H, Shiu KB, Brownlie J, Erles K (2009) J Virol Methods 155:136–142CrossRefGoogle Scholar
  16. 16.
    Arumuganathan K, Earle ED (1991) Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  17. 17.
    Guertler P, Lutz B, Kuehn R, Meyer HHD, Killermann B, Albrecht C (2007) Eur J Wildl Res 54:36–43CrossRefGoogle Scholar
  18. 18.
    Paul V, Steinke K, Meyer HH (2008) Anal Chim Acta 607:106–113CrossRefGoogle Scholar
  19. 19.
    (2002) Official Journal of the European Communities L221Google Scholar
  20. 20.
    Phipps RH, Jones AK, Tingey AP, Abeyasekera S (2005) J Dairy Sci 88:2870–2878CrossRefGoogle Scholar
  21. 21.
    Nemeth A, Wurz A, Artim L, Charlton S, Dana G, Glenn K, Hunst P, Jennings J, Shilito R, Song P (2004) J Agric Food Chem 52:6129–6135CrossRefGoogle Scholar
  22. 22.
    Phipps RH, Deaville ER, Maddison BC (2003) J Dairy Sci 86:4070–4078CrossRefGoogle Scholar
  23. 23.
    Hupfer C, Hotzel H, Sachse K, Engel K-H (1998) Eur Food Res Technol 206:203–207Google Scholar
  24. 24.
    Hupfer C, Mayer J, Hotzel H, Sachse K, Engel K-H (1999) Eur Food Res Technol 209:301–304CrossRefGoogle Scholar
  25. 25.
    Lutz B, Wiedemann S, Albrecht C (2006) Anim Physiol Anim Nutr (Berl) 90:116–123CrossRefGoogle Scholar
  26. 26.
    Wiedemann S, Lutz B, Kurtz H, Schwarz FJ, Albrecht C (2006) J Anim Sci 84:135–144Google Scholar
  27. 27.
    Lutz B, Wiedemann S, Einspanier R, Mayer J, Albrecht C (2005) J Agric Food Chem 53:1453–1456CrossRefGoogle Scholar
  28. 28.
    Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Proc Natl Acad Sci USA 94:961–966CrossRefGoogle Scholar
  29. 29.
    Hohlweg U, Doerfler W (2001) Mol Genet Genomics 265:225–233CrossRefGoogle Scholar
  30. 30.
    Klotz A, Mayer J, Einspanier R (2002) Eur Food Res Technol 214:271–275CrossRefGoogle Scholar
  31. 31.
    Reuter T, Aulrich K (2003) Eur Food Res Technol 216:185–192Google Scholar
  32. 32.
    Shimada N, Miyamoto K, Kanda K, Murata H (2006) Appl Entomol Zool 41:295–301CrossRefGoogle Scholar
  33. 33.
    Shimada N, Miyamoto K, Kanda K, Murata H (2006) In Vitro Cell Dev Biol Anim 42:45–49Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Patrick Guertler
    • 1
  • Vijay Paul
    • 1
  • Christiane Albrecht
    • 1
    • 2
  • Heinrich H. D. Meyer
    • 1
  1. 1.Physiology WeihenstephanTechnische Universität MünchenFreisingGermany
  2. 2.Institute of Biochemistry and Molecular MedicineUniversity of BernBernSwitzerland

Personalised recommendations