Analytical and Bioanalytical Chemistry

, Volume 394, Issue 5, pp 1307–1317 | Cite as

Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of carbamate insecticide residues in fruits

  • Apichai Santalad
  • Supalax Srijaranai
  • Rodjana Burakham
  • Jeremy D. Glennon
  • Richard L. Deming
Original Paper


A cloud-point extraction (CPE) method using Triton X-114 non-ionic surfactant was developed for the extraction and preconcentration of carbamate insecticide residues (i.e., methomyl, propoxur, carbofuran, carbaryl, isoprocarb, and promecarb) in fruit samples. The optimum conditions of CPE were 1.5% (w/v) Triton X-114, 7.0% (w/v) NaCl and 20 min equilibrated at 45 °C. The surfactant-rich phase was then analyzed by reversed-phase high-performance liquid chromatography with ultraviolet detection at 270 nm, under gradient separation using methanol and 0.1% (v/v) acetic acid. Under the study conditions, six carbamate insecticides were successfully separated within 27 min. Good reproducibility was obtained with the relative standard deviation of <3% for retention time and <9% for peak area. Limits of detection in the studied fruit samples were in the range of 0.1–1.0 mg kg−1. No carbamate insecticides were detected in the studied fruit samples. The high recoveries of the spiked fruit samples were obtained in the range 80.0–107%. The CPE method has been shown to be a potential useful methodology for the preconcentration of the target analytes, with a preconcentration factor of 14. Moreover, the method is simple, has high sensitivity, consumes much less solvent than traditional methods, and is environmental friendly.


Cloud-point extraction Triton X-114 Carbamate insecticides Fruits High-performance liquid chromatography 



The authors wish to thank the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education and the Thailand Research Fund through the Royal Golden Jubilee (RGJ) Ph.D. Program (Grant No: PHD/0083/2549) for financial support of A. Santalad and S. Srijaranai. A. Santalad is grateful to Rajamangala University of Technology Isan Khon Kaen Campus through the staff development project for partial financial support. Finally, we are also grateful to the Commission on Higher Education (CHE) for financial support through the CHE-RES-RG project.


  1. 1.
    Zhang J, Lee HK (2006) J Chromatogr A 1117:31–37CrossRefGoogle Scholar
  2. 2.
    Molina M, Wiedmer SK, Jussila M, Silva M, Riekkola M-L (2001) J Chromatogr A 927:191–202CrossRefGoogle Scholar
  3. 3.
    Mickova B, Kovalczuk T, Rauch P, Moreno MJ, Abad A, Montoya A, Ferri E, Fini F, Girotti S (2005) Anal Chim Acta 528:243–248CrossRefGoogle Scholar
  4. 4.
    U.S. Environmental Protection Agency (1994) Method 8318, N-methylcarbamates by high performance liquid chromatography, Revision 0Google Scholar
  5. 5.
    U.S. Environmental Protection Agency (1995) Method 531.1, Measurement of N-methylcarbamoyloximes and N-methylcarbamates in water by direct aqueous injection HPLC with post column derivatization, Revision 3.1Google Scholar
  6. 6.
    U.S. Environmental Protection Agency (2001) Method 531.2, Measurement of N-methylcarbamoyloximes and N-methylcarbamates in water by direct aqueous injection HPLC with post column derivatization, Revision 1.0Google Scholar
  7. 7.
    Fernández M, Picó Y, Mañes J (2000) J Chromatogr A 871:43–56CrossRefGoogle Scholar
  8. 8.
    Granby K, Andersen JH, Christensen HB (2000) Anal Chim Acta 520:165–176CrossRefGoogle Scholar
  9. 9.
    Jansson C, Pihlström T, Österdahl B-G, Markides KE (2004) J Chromatogr A 1023:93–104CrossRefGoogle Scholar
  10. 10.
    Goto T, Ito Y, Yamada S, Matsumoto H, Oka H, Nagase H (2006) Anal Chim Acta 555:225–232CrossRefGoogle Scholar
  11. 11.
    Bogialli S, Curini R, Corcia AD, Nazzari M, Tamburro D (2004) J Agric Food Chem 52:665–671CrossRefGoogle Scholar
  12. 12.
    Takino M, Yamaguchi K, Nakahara T (2004) J Agric Food Chem 52:727–735CrossRefGoogle Scholar
  13. 13.
    Zhu H-Z, Liu W, Mao J-W, Yang M-M (2008) Anal Chim Acta 614:58–62CrossRefGoogle Scholar
  14. 14.
    Zhou J, Wang SW, Sun XL (2008) Anal Chim Acta 608:158–164CrossRefGoogle Scholar
  15. 15.
    Hung K-C, Chen B-H, Yu LE (2007) Sep Purif Technol 57:1–10CrossRefGoogle Scholar
  16. 16.
    Delgado B, Pino V, Ayala JH, González V, Afonso AM (2004) Anal Chim Acta 518:165–172CrossRefGoogle Scholar
  17. 17.
    Liu W, Zhao W-J, Chen J-B, Yang M-M (2007) Anal Chim Acta 605:41–45CrossRefGoogle Scholar
  18. 18.
    Han F, Yin R, Shi X-L, Jia Q, Lui H-Z, Yao H-M, Xu L, Li S-M (2008) J Chromatogr B 868:64–69CrossRefGoogle Scholar
  19. 19.
    Shi Z, Zhu X, Zhang H (2007) J Pharmaceu Biomed Anal 44:867–873CrossRefGoogle Scholar
  20. 20.
    Sanz CP, Halko R, Ferrera ZS, Rodríguez JJS (2004) Anal Chim Acta 524:265–270CrossRefGoogle Scholar
  21. 21.
    Pinto CG, Pavón JLP, Cordero BM (1995) Anal Chem 67:2606–2612CrossRefGoogle Scholar
  22. 22.
    Halko R, Sanz CP, Ferrera ZS, Rodríguez JJS (2004) Chromatographia 60:151–156CrossRefGoogle Scholar
  23. 23.
    IUPAC agrochemical information.
  24. 24.
    Xiarchos I, Doulia D (2006) J Hazard Mater 136:882–888CrossRefGoogle Scholar
  25. 25.
    Carabias-Martínez R, Rodríguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón JL, García-Pinto C, Fernández-Laespada E (2000) J Chromatogr A 902:251–265CrossRefGoogle Scholar
  26. 26.
    Liu X, Chen X-H, Zhang Y-Y, Liu W-T, Bi K-S (2007) J Chromatogr B 856:273–277CrossRefGoogle Scholar
  27. 27.
    Wang L, Cai Y-Q, He B, Yuan C-G, Shen D-Z, Shao J, Jiang G-B (2006) Talanta 70:47–51CrossRefGoogle Scholar
  28. 28.
    Quina FH, Hinze WL (1999) Ind Eng Chem Res 38:4150–4168CrossRefGoogle Scholar
  29. 29.
    Wang L, Jiang G-B, Cai Y-Q, He B, Wang Y-W, Shen D-Z (2007) J Environ Sci 19:874–878CrossRefGoogle Scholar
  30. 30.
    Ferrera ZS, Sanz CP, Santana CM, Rodríguez JJS (2004) TrAC Trends Anal Chem 23:469–479CrossRefGoogle Scholar
  31. 31.
    He J, Zhao Z, Shi Z, Zhao M, Li Y, Chang W (2005) J Agric Food Chem 53:518–523CrossRefGoogle Scholar
  32. 32.
    Pino V, Ayala JH, Afonso AM, González V (2002) J Chromatogr A 949:291–299CrossRefGoogle Scholar
  33. 33.
    Purkait MK, Dasgupta S, De S (2006) J Hazard Mater 137:827–835CrossRefGoogle Scholar
  34. 34.
    Materna K, Cote G, Szymanowski J (2004) J Colloid Interface Sci 269:466–471CrossRefGoogle Scholar
  35. 35.
    Materna K, Szymanowski J (2002) J Colloid Interface Sci 255:195–201CrossRefGoogle Scholar
  36. 36.
    Minnes R, Ytzhak S, Weitman H (2008) Chem Phys Lip 155:38–42CrossRefGoogle Scholar
  37. 37.
    Zhou J, Sun XL, Wang SW (2008) J Chormatogr A 1200:93–99CrossRefGoogle Scholar
  38. 38.
    Shi Z, He J, Chang W (2004) Talanta 64:401–407CrossRefGoogle Scholar
  39. 39.
    Zygoura PD, Paleologos EK, Riganakos KA, Kontominas MG (2005) J Chromatogr A 1093:29–35CrossRefGoogle Scholar
  40. 40.
    Paleologos EK, Chytiri SD, Savvaidis IN, Kontominas MG (2003) J Chromatogr A 1010:217–224CrossRefGoogle Scholar
  41. 41.
    Seronero LC, Laespada MEF, Pavón JLP, Cordero BM (2000) J Chromatogr A 897:171–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Apichai Santalad
    • 1
  • Supalax Srijaranai
    • 1
  • Rodjana Burakham
    • 1
  • Jeremy D. Glennon
    • 2
  • Richard L. Deming
    • 3
  1. 1.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Chemistry, Analytical and Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland
  3. 3.Department of Chemistry and Biochemistry, Faculty of ScienceCalifornia State University FullertonFullertonUSA

Personalised recommendations