Analytical and Bioanalytical Chemistry

, Volume 394, Issue 1, pp 277–283

Cell separation by the combination of microfluidics and optical trapping force on a microchip

  • Masaya Murata
  • Yukihiro Okamoto
  • Yeon-Su Park
  • Noritada Kaji
  • Manabu Tokeshi
  • Yoshinobu Baba
Original Paper


We investigated properties of cells affecting their optical trapping force and successfully established a novel cell separation method based on the combined use of optical trapping force and microfluidics on a microchip. Our investigations reveal that the morphology, size, light absorption, and refractive index of cells are important factors affecting their optical trapping force. A sheath flow of sample solutions created in a microchip made sample cells flow in a narrow linear stream and an optical trap created by a highly focused laser beam captured only target cells and altered their trajectory, resulting in high-efficiency cell separation. An optimum balance between optical trapping force and sample flow rate was essential to achieve high cell separation efficiency. Our investigations clearly indicate that the on-chip optical trapping method allows high-efficiency cell separation without cumbersome and time-consuming cell pretreatments. In addition, our on-chip optical trapping method requires small amounts of sample and may permit high-throughput cell separation and integration of other functions on microchips.


Optical trapping in a microchannel allows high-efficiency separation of cells, e.g., dead and live HeLa cells


Optical trapping Microchip Cell separation Sheath flow Trapping force 



deoxyribonucleic acid


fetal bovine serum


Dulbecco’s modified Eagle medium


ultraviolet and visible


figure of merit


  1. 1.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis L, Tompkins RG, Haber DA, Toner M (2007) Nature 450:1235–1239CrossRefGoogle Scholar
  2. 2.
    Friedman SL, Roll FJ (1987) Anal Biochem 161:207–218CrossRefGoogle Scholar
  3. 3.
    Tulp A, Verwoerd D, Pieters J (1993) Electrophoresis 14:1295–1301CrossRefGoogle Scholar
  4. 4.
    Miltenyi S, Muller W, Weichel W, Radbruch A (1990) Cytometry 11:231–238CrossRefGoogle Scholar
  5. 5.
    Malatesta P, Hartfuss E, Götz M (2000) Development 127:5253–5263Google Scholar
  6. 6.
    El-Ali J, Sorger PK, Jensen KF (2006) Nature 442:403–411CrossRefGoogle Scholar
  7. 7.
    Furdui VI, Harrison DJ (2004) Lab Chip 4:614–618CrossRefGoogle Scholar
  8. 8.
    Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) Nature 17:1109–1111CrossRefGoogle Scholar
  9. 9.
    Becker FF, Wang XB, Huang YPR, Pethig R, Vykoukal J, Gascoyne PRC (1995) Proc Natl Acad Sci USA 92:860–864CrossRefGoogle Scholar
  10. 10.
    Yamada M, Kasim V, Nakashima M, Edahiro J, Seki M (2004) Biotechnol Bioeng 88:489–494CrossRefGoogle Scholar
  11. 11.
    Chang WC, Lee LP, Liepmann D (2005) Lab Chip 5:64–73CrossRefGoogle Scholar
  12. 12.
    Huang LR, Cox EC, Austin RH, Sturm JC (2004) Science 304:987–990CrossRefGoogle Scholar
  13. 13.
    Ashkin A (1970) Phys Rev Lett 24:156–159CrossRefGoogle Scholar
  14. 14.
    Ashkin A, Dziedzic JM (1971) Appl Phys Lett 19:283–285CrossRefGoogle Scholar
  15. 15.
    Ashkin A, Dziedzic JM (1987) Science 235:1517–1520CrossRefGoogle Scholar
  16. 16.
    Ashkin A, Dziedzic JM, Yamane T (1987) Nature 330:769–771CrossRefGoogle Scholar
  17. 17.
    Hirano K, Baba Y, Matsuzawa Y, Mizuno A (2002) Appl Phys Lett 80:515–517CrossRefGoogle Scholar
  18. 18.
    Hirano K, Nagata H, Ishido T, Tanaka Y, Baba Y, Ishikawa M (2008) Anal Chem 80:5197–5202CrossRefGoogle Scholar
  19. 19.
    Nagata H, Tabuchi M, Hirano K, Baba Y (2005) Electrophoresis 26:2247–2253CrossRefGoogle Scholar
  20. 20.
    D’Helon C, Dearden EW, Rubinsztein-Dunlop H, Heckenberg NR (1994) J Mod Opt 41:595–601CrossRefGoogle Scholar
  21. 21.
    Schönle A, Hell SW (1998) Opt Lett 23:325–327CrossRefGoogle Scholar
  22. 22.
    Liu Y, Cheng DK, Sonek GJ, Berns MW, Chapman CF, Tromberg BJ (1995) Biophys J 68:2137–2144CrossRefGoogle Scholar
  23. 23.
    Peterman EJG, Gittes F, Schmidt CF (2003) Biophys J 84:1308–1316CrossRefGoogle Scholar
  24. 24.
    Sato S, Inaba H (1994) Opt Lett 19:927–929CrossRefGoogle Scholar
  25. 25.
    Liu Y, Sonek GJ, Berns MW, Konig K, Tromberg BJ (1995) Opt Lett 20:2246–2248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Masaya Murata
    • 1
  • Yukihiro Okamoto
    • 1
    • 2
  • Yeon-Su Park
    • 2
  • Noritada Kaji
    • 1
    • 2
  • Manabu Tokeshi
    • 1
    • 2
  • Yoshinobu Baba
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.MEXT Innovative Research Center for Preventive Medical EngineeringNagoya UniversityNagoyaJapan
  3. 3.Plasma Nanotechnology Research CenterNagoya UniversityNagoyaJapan
  4. 4.Health Technology Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)TakamatsuJapan
  5. 5.Institute for Molecular ScienceNational Institutes of Natural SciencesOkazakiJapan

Personalised recommendations