Analytical and Bioanalytical Chemistry

, Volume 394, Issue 1, pp 121–135 | Cite as

Label-free technologies for quantitative multiparameter biological analysis

  • Abraham J. Qavi
  • Adam L. Washburn
  • Ji-Yeon Byeon
  • Ryan C. BaileyEmail author


In the postgenomic era, information is king and information-rich technologies are critically important drivers in both fundamental biology and medicine. It is now known that single-parameter measurements provide only limited detail and that quantitation of multiple biomolecular signatures can more fully illuminate complex biological function. Label-free technologies have recently attracted significant interest for sensitive and quantitative multiparameter analysis of biological systems. There are several different classes of label-free sensors that are currently being developed both in academia and in industry. In this critical review, we highlight, compare, and contrast some of the more promising approaches. We describe the fundamental principles of these different methods and discuss advantages and disadvantages that might potentially help one in selecting the appropriate technology for a given bioanalytical application.


Genomics/proteomics Bioassays Biochips/high-throughput screening Biosensors Clinical/biomedical analysis Immunoassays/ELISA 



We acknowledge financial support for our own efforts in developing new quantitative, label-free multiparameter biomolecular analysis methods from the following agencies: the NIH Director’s New Innovator Award Program, part of the NIH Roadmap for Medical Research, through grant number 1-DP2-OD002190–01; the Camille and Henry Dreyfus Foundation, through a New Faculty Award; and the US National Science Foundation through the Science and Technology Center of Advanced Materials for the Purification of Water with Systems (WaterCAMPWS, CTS-0120978). A.L.W. acknowledges support via a National Science Foundation Graduate Research Fellowship.


  1. 1.
    Kodadek T (2001) Chem Biol 8:105Google Scholar
  2. 2.
    Sun YS, Landry JP, Fei YY, Zhu XD, Luo JT, Wang XB, Lam KS (2008) Langmuir 24:13399–13405Google Scholar
  3. 3.
    Sheehan PE, Whitman LJ (2005) Nano Lett 5:803Google Scholar
  4. 4.
    Squires TM, Messinger RJ, Manalis SR (2008) Nat Biotechnol 26:417Google Scholar
  5. 5.
    Smith EA, Corn RM (2003) Appl Spectrosc 57:320aGoogle Scholar
  6. 6.
    Homola J (2008) Chem Rev 108:462Google Scholar
  7. 7.
    Liedberg B, Nylanderand C, Lundstrom I (1983) Sens Actuators 4:299Google Scholar
  8. 8.
    Kooyman RPH, Kolkman H, Van Gent J, Greve J (1988) Anal Chim Acta 213:35Google Scholar
  9. 9.
    Yeatman E, Ash EA (1987) Electron Lett 40:1091Google Scholar
  10. 10.
    Jordan CE, Corn RM (1997) Anal Chem 69:1449Google Scholar
  11. 11.
    Jordan CE, Frutos AG, Thiel AJ, Corn RM (1997) Anal Chem 69:4939Google Scholar
  12. 12.
    Thiel AJ, Fructos AG, Jordan CE, Corn RM, Smith LM (1997) Anal Chem 69:4948Google Scholar
  13. 13.
    Campbell CT, Kim G (2007) Biomaterials 28:2380Google Scholar
  14. 14.
    Shumaker-Parry JS, Campbell CT (2004) Anal Chem 76:907Google Scholar
  15. 15.
    Shumaker-Parry JS, Zareie MH, Aebersold R, Campbell CT (2004) Anal Chem 76:918Google Scholar
  16. 16.
    Shumaker-Parry JS, Aebersold R, Campbell CT (2004) Anal Chem 76:2071Google Scholar
  17. 17.
    Boozer C, Kim G, Cong S, Guan H, Londergan T (2006) Curr Opin Biotechnol 17:400Google Scholar
  18. 18.
    Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Anal Chem 73:1Google Scholar
  19. 19.
    Goodrich TT, Lee HJ, Corn RM (2004) Anal Chem 76:6173Google Scholar
  20. 20.
    Goodrich TT, Lee HJ, Corn RM (2004) J Am Chem Soc 126:4086Google Scholar
  21. 21.
    Lee HJ, Li Y, Wark AW, Corn RM (2005) Anal Chem 77:5096Google Scholar
  22. 22.
    Wolf LK, Gao Y, Georgiadis RM (2007) J Am Chem Soc 129:10503Google Scholar
  23. 23.
    Beusink JB, Lokate A, Besselink G, Pruijin G, Schasfoort R (2008) Biosens Bioelectron 23:839Google Scholar
  24. 24.
    Brockman J, Fernandez SM (2001) Am Lab 33:37Google Scholar
  25. 25.
    Baggio R, Carven GJ, Chiulli A, Palmer M, Stern LJ, Arenas JE (2005) J Biol Chem 280:4188Google Scholar
  26. 26.
    General Electric (2009) Biacore Life Sciences.
  27. 27.
    GWC Technologies (2009) GWC Technologies.
  28. 28.
    IBIS Technologies (2009) IBIS Technologies.
  29. 29.
    TOYOBO (2009) TOYOBO.
  30. 30.
    GenOptics (2006) GENOPTICS—Genoptics.
  31. 31.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667Google Scholar
  32. 32.
    Gao HW, Henzie J, Odom TW (2006) Nano Lett 6:2104Google Scholar
  33. 33.
    Dintinger J, Degiron A, Ebbesen TW (2005) MRS Bull 30:381Google Scholar
  34. 34.
    Yang J-C, Ji J, Hogle JM, Larson DN (2008) Nano Lett 8:2718Google Scholar
  35. 35.
    Ji J, O’Connell JG, Carter DJD, Larson DN (2008) Anal Chem 80:2491Google Scholar
  36. 36.
    Langmuir I, Schaefer VJ (1937) J Am Chem Soc 59:1406Google Scholar
  37. 37.
    Vroman L, Adams AL (1969) Surf Sci 16:438Google Scholar
  38. 38.
    Lukosz W, Clerc D, Nellen PM, Stamm C, Weiss P (1991) Biosens Bioelectron 6:227Google Scholar
  39. 39.
    Gauglitz G, Brecht A, Kraus G, Nahm W (1993) Sens Actuators B Chem 11:21Google Scholar
  40. 40.
    Cunningham B, Li P, Lin B, Pepper J (2002) Sens Actuators B Chem 81:316Google Scholar
  41. 41.
    Lee M, Fauchet PM (2007) Opt Express 15:4530Google Scholar
  42. 42.
    Cunningham BT, Laing L (2006) Expert Rev Proteomics 3:271Google Scholar
  43. 43.
    Cunningham BT (2008) Proc SPIE 6959:695910Google Scholar
  44. 44.
    Chan LL, Gosangari SL, Watkin KL, Cunningham BT (2007) Apoptosis 12:1061Google Scholar
  45. 45.
    Chan LL, Gosangari SL, Watkin KL, Cunningham BT (2008) Sens Actuators B Chem 132:418Google Scholar
  46. 46.
    Chan LL, Pineda M, Heeres JT, Hergenrother PJ, Cunningham BT (2008) ACS Chem Biol 3:437Google Scholar
  47. 47.
    Choi CJ, Cunningham BT (2007) Lab Chip 7:550Google Scholar
  48. 48.
    SRU Biosystems (2008) SRU Biosystems.
  49. 49.
    Vollmer F, Arnold S (2008) Nat Methods 5:591Google Scholar
  50. 50.
    Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ (2007) Science 317:783Google Scholar
  51. 51.
    Suter JD, White IM, Zhu H, Shi H, Caldwell CW, Fan X (2008) Biosens Bioelectron 23:1003Google Scholar
  52. 52.
    Zhu H, White IM, Suter JD, Zourob M, Fan X (2008) Analyst 133:356Google Scholar
  53. 53.
    White IM, Oveys H, Fan X, Smith TL, Zhang J (2006) Appl Phys Lett 89:191106Google Scholar
  54. 54.
    White IM, Oveys H, Fan X, Smith TL, Zhang J (2007) Proc SPIE 6475:647505Google Scholar
  55. 55.
    Ramachandran A, Wang S, Clarke J, Ja SJ, Goad D, Wald L, Flood EM, Knobbe E, Hryniewicz JV, Chu ST, Gill D, Chen W, King O, Little BE (2008) Biosens Bioelectron 23:939Google Scholar
  56. 56.
    Mandal S, Akhmechet R, Chen L, Nugen S, Baeumner A, Erickson D (2007) Proc SPIE 6645:66451JGoogle Scholar
  57. 57.
    Mandal S, Erickson D (2008) Opt Express 16:1623Google Scholar
  58. 58.
    De Vos KM, Bartolozzi I, Bienstman P, Baets R, Schacht E (2007) Proc SPIE 6447:64470KGoogle Scholar
  59. 59.
    Michael CP, Borselli M, Johnson TJ, Chrystal C, Painter O (2007) Opt Express 15:4745Google Scholar
  60. 60.
    Jin G, Tengvall P, Lundstrom I, Arwin H (1995) Anal Biochem 232:69Google Scholar
  61. 61.
    Jin G (2008) Phys Status Solidi A Appl Mater Sci 205:810Google Scholar
  62. 62.
    Landry JP, Sun YS, Guo XW, Zhu XD (2008) Appl Opt 47:3275Google Scholar
  63. 63.
    Wang ZH, Jin G (2003) Anal Chem 75:6119Google Scholar
  64. 64.
    Zhu X, Landry JP, Sun Y-S, Gregg JP, Lam KS, Guo X (2007) Appl Opt 46:1890Google Scholar
  65. 65.
    Chamritski I, Clarkson M, Franklin J, Li SW (2007) Aust J Chem 60:667Google Scholar
  66. 66.
    Hanel C, Gauglitz G (2002) Anal Bioanal Chem 372:91Google Scholar
  67. 67.
    Ozkumar E, Needham JW, Bergstein DA, Gonzalez R, Cabodi M, Gershoni JM, Goldberg BB, Unlu MS (2008) Proc Natl Acad Sci USA 105:7988Google Scholar
  68. 68.
    Birkert O, Gauglitz G (2002) Anal Bioanal Chem 372:141Google Scholar
  69. 69.
    Birkert O, Tunnernann R, Jung G, Gauglitz G (2002) Anal Chem 74:834Google Scholar
  70. 70.
    Kroger K, Bauer J, Fleckenstein B, Rademann J, Jung G, Gauglitz G (2002) Biosens Bioelectron 17:937Google Scholar
  71. 71.
    Mohrle BP, Kumpf M, Gauglitz GN (2005) Analyst 130:1634Google Scholar
  72. 72.
    Mohrle B, Kohler K, Jaehrling J, Brock R, Gauglitz G (2006) Anal Bioanal Chem 384:407Google Scholar
  73. 73.
    biametrics (2009) biametrics—biomolecular interaction analysis.
  74. 74.
    Zoiray Technologies (2009) Home.
  75. 75.
    Zhao M, Nolte D, Cho W, Regnier F, Varma M, Lawrence G, Pasqua J (2006) Clin Chem 52:2135Google Scholar
  76. 76.
    Quadraspec (2007) Quadraspec—diagnostic testing for medical research.
  77. 77.
    Zhao M, Wang X, Lawrence GM, Espinoza P, Nolte DD (2007) IEEE J Sel Top Quantum Electron 13:1680Google Scholar
  78. 78.
    Zhao M, Wang X, Nolte DD (2008) Opt Express 16:7102Google Scholar
  79. 79.
    Mace CR, Striemer CC, Miller BL (2008) Biosens Bioelectron 24:334Google Scholar
  80. 80.
    Lisdat F, Schafer D (2008) Anal Bioanal Chem 391:1555Google Scholar
  81. 81.
    Daniels JS, Pourmand N (2007) Electroanalysis 19:1239Google Scholar
  82. 82.
    Patolsky F, Zheng G, Lieber CM (2006) Anal Chem 78:4260Google Scholar
  83. 83.
    Patolsky F, Lieber CM (2005) Mater Today 8:20Google Scholar
  84. 84.
    Janata J (2004) Electroanalysis 16:1831Google Scholar
  85. 85.
    Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Proc Natl Acad Sci USA 101:14017Google Scholar
  86. 86.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Science 293:1289Google Scholar
  87. 87.
    Wang WU, Chen C, Lin KH, Fang Y, Lieber CM (2005) Proc Natl Acad Sci USA 102:3208Google Scholar
  88. 88.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nat Biotechnol 23:1294Google Scholar
  89. 89.
    Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007) Nature 445:519Google Scholar
  90. 90.
    Hahm J, Lieber CM (2004) Nano Lett 4:51Google Scholar
  91. 91.
    Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung CH, Fan Y, Buddharaju KD, Kong J (2007) Anal Chem 79:3291Google Scholar
  92. 92.
    Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR (2006) J Am Chem Soc 128:16323Google Scholar
  93. 93.
    Patolsky F, Timko BP, Yu GH, Fang Y, Greytak AB, Zheng GF, Lieber CM (2006) Science 313:1100Google Scholar
  94. 94.
    Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA (2007) Nano Lett 7:3405Google Scholar
  95. 95.
    Fan Z, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, Javey A (2008) Nano Lett 8:20Google Scholar
  96. 96.
    Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Science 300:112Google Scholar
  97. 97.
    Wang J (2005) Analyst 130:421Google Scholar
  98. 98.
    Sinha N, Ma J, Yeow JT (2006) J Nanosci Nanotechnol 6:573Google Scholar
  99. 99.
    Kojima A, Hyon CK, Kamimura T, Maeda M, Matsumoto K (2005) Jpn J Appl Phys 44:1596Google Scholar
  100. 100.
    Dong XC, Fu DL, Xu YP, Wei JQ, Shi YM, Chen P, Li LJ (2008) J Phys Chem C 112:9891Google Scholar
  101. 101.
    Kerman K, Vestergaard M, Tamiya E (2007) Anal Chem 79:6881Google Scholar
  102. 102.
    Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Nano Lett 3:727Google Scholar
  103. 103.
    Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang YL, Wang Q (2006) Nano Lett 6:1632Google Scholar
  104. 104.
    Koehne JE, Chen H, Cassell AM, Ye Q, Han J, Meyyappan M, Li J (2004) Clin Chem 50:1886Google Scholar
  105. 105.
    Dastagir T, Forzani ES, Zhang R, Amlani I, Nagahara LA, Tsui R, Tao N (2007) Analyst 132:738Google Scholar
  106. 106.
    Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Anal Chem 79:782Google Scholar
  107. 107.
    Pengfei QF, Vermesh O, Grecu M, Javey A, Wang O, Dai HJ, Peng S, Cho KJ (2003) Nano Lett 3:347Google Scholar
  108. 108.
    Yu X, Xu D, Lv R, Liu Z (2006) Front Biosci 11:983Google Scholar
  109. 109.
    Darain F, Park D-S, Park J-S, Shim Y-B (2004) Biosens Bioelectron 19:1245Google Scholar
  110. 110.
    Wu Z-S, Li J-S, Deng T, Luo M-H, Shen G-L, Yu R-Q (2004) Anal Biochem 337:308Google Scholar
  111. 111.
    Chen X, Wang Y, Zhou J, Yan W, Li X, Zhu J-H (2008) Anal Chem 80:2133Google Scholar
  112. 112.
    Li C-Z, Liu Y, Luong JHT (2005) Anal Chem 77:478Google Scholar
  113. 113.
    Dharuman V, Grunwald I, Nebling E, Albers J, Blohm L, Hintsche R (2005) Biosens Bioelectron 21:645Google Scholar
  114. 114.
    Yang L, Li Y, Erf GF (2004) Anal Chem 76:1107Google Scholar
  115. 115.
    Long Y-T, Li C-Z, Kraatz H-B, Lee JS (2003) Biophys J 84:3218Google Scholar
  116. 116.
    Kafka J, Panke O, Abendroth B, Lisdat F (2008) Electrochim Acta 53:7467Google Scholar
  117. 117.
    Li X, Lee JS, Kraatz HB (2006) Anal Chem 78:6096Google Scholar
  118. 118.
    Varshney M, Li YB (2007) Biosens Bioelectron 22:2408Google Scholar
  119. 119.
    Maalouf R, Fournier-Wirth C, Coste J, Chebib H, Saikali Y, Vittori O, Errachid A, Cloarec JP, Martelet C, Jaffrezic-Renault N (2007) Anal Chem 79:4879Google Scholar
  120. 120.
    La Belle JT, Gerlach JQ, Svarovsky S, Joshi L (2007) Anal Chem 79:6959Google Scholar
  121. 121.
    Du Y, Li BL, Wei H, Wang YL, Wang EK (2008) Anal Chem 80:5110Google Scholar
  122. 122.
    Evans D, Johnson S, Laurenson S, Davies AG, Ko Ferrigno P, Walti C (2008) J Biol 7:3Google Scholar
  123. 123.
    Cooper MA (2006) Drug Discov Today 11:1068Google Scholar
  124. 124.
    ACEA Biosciences (2008) ACEA Biosciences—xCELLigence system,cell index,E-plate.
  125. 125.
    Applied BioPhysics (2008) Applied BioPhysics, ECIS, cell migration instrument.
  126. 126.
    Heidel JD, Liu JY, Yen Y, Zhou B, Heale BS, Rossi JJ, Bartlett DW, Davis ME (2007) Clin Cancer Res 13:2207Google Scholar
  127. 127.
    Sapper A, Reiss B, Janshoff A, Wegener J (2006) Langmuir 22:676Google Scholar
  128. 128.
    Glamann J, Hansen AJ (2006) Assay Drug Dev Technol 4:555Google Scholar
  129. 129.
    Zhu J, Wang XB, Xu X, Abassi YA (2006) J Immunol Methods 309:25Google Scholar
  130. 130.
    Chanana M, Gliozzi A, Diaspro A, Chodnevskaja I, Huewel S, Moskalenko V, Ulrichs K, Galla HJ, Krol S (2005) Nano Lett 5:2605Google Scholar
  131. 131.
    Gimzewski JK, Gerber C, Meyer E, Schlittler RR (1994) Chem Phys Lett 217:589Google Scholar
  132. 132.
    Guo Z, Zhang Q, Dong F, Chen D, Xiong Z, Miao Z, Li C, Jiao B, Wu X (2007) Sens Actuators A Phys 137:13Google Scholar
  133. 133.
    Ivanov T, Gotszalk T, Grabiec P, Tomerov E, Rangelow IW (2003) Microelectron Eng 67–68:550Google Scholar
  134. 134.
    Lange K, Rapp BE, Rapp M (2008) Anal Bioanal Chem 391:1509Google Scholar
  135. 135.
    Bardea A, Dagan A, Ben-Dov I, Amit B, Willner I (1998) Chem Commun 839Google Scholar
  136. 136.
    Okahata Y, Kawase M, Niikura K, Ohtake F, Furusawa H, Ebara Y (1998) Anal Chem 70:1288Google Scholar
  137. 137.
    Wang J, Jiang M, Nilsen TW, Getts RC (1998) J Am Chem Soc 120:8281Google Scholar
  138. 138.
    Ijiro K, Ringsdorf H, Birch-Hirschfeld E, Hoffmann S, Schilken U, Strube M (1998) Langmuir 14:2796Google Scholar
  139. 139.
    Muratsugu M, Ohta F, Miya Y, Hosokawa T, Kurosawa S, Kamo N, Ikeda H (1993) Anal Chem 65:2933Google Scholar
  140. 140.
    Niikura K, Nagata K, Okahata Y (1996) Chem Lett 10:863Google Scholar
  141. 141.
    Sato T, Ishii M, Ohtake F, Nagata K, Terabayashi T, Kawanishi Y, Okahata Y (1999) Glycoconj J 16:223Google Scholar
  142. 142.
    Zampetti E, Pantalei S, Macagnano A, Proietti E, Di Natale C, D’Amico A (2008) Sens Actuators B Chem 131:159Google Scholar
  143. 143.
    Zhang B, Mao Q, Zhang X, Jiang T, Chen M, Yu F, Fu W (2004) Biosens Bioelectron 19:711Google Scholar
  144. 144.
    Ebara Y, Okahata Y (1993) Langmuir 9:574Google Scholar
  145. 145.
    Fawcett NC, Craven RD, Zhang P, Evans JA (1998) Anal Chem 70:2876Google Scholar
  146. 146.
    Su H, Thompson M (1995) Biosens Bioelectron 10:329Google Scholar
  147. 147.
    Lavrik NV, Sepaniak MJ, Datskos PG (2004) Rev Sci Instrum 75:2229Google Scholar
  148. 148.
    Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C, Batt C (2001) J Vac Sci Technol B 19:2825Google Scholar
  149. 149.
    Ziegler C (2004) Anal Bioanal Chem 379:946Google Scholar
  150. 150.
    Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Guntherodt HJ, Gerber C, Gimzewski JK (2000) Science 288:316Google Scholar
  151. 151.
    McKendry R, Zhang JY, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, Guntherodt HJ, Gerber C (2002) Proc Natl Acad Sci USA 99:9783Google Scholar
  152. 152.
    Arntz Y, Seelig JD, Lang HP, Zhang J, Hunziker P, Ramseyer JP, Meyer E, Hegner M, Gerber C (2003) Nanotechnology 14:86Google Scholar
  153. 153.
    Backmann N, Zahnd C, Huber F, Bietsch A, Pluckthun A, Lang HP, Guntherodt HJ, Hegner M, Gerber C (2005) Proc Natl Acad Sci USA 102:14587Google Scholar
  154. 154.
    Lam Y, Abu-Lail NI, Alam MS, Zauscher S (2006) Nanomedicine 2:222Google Scholar
  155. 155.
    Wu GH, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Nature Biotechnol 19:856Google Scholar
  156. 156.
    Yue M, Stachowiak JC, Lim H, Datar R, Cote R, Majumdar A (2008) Nano Lett 8:520Google Scholar
  157. 157.
    Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead HG (2005) Nano Lett 5:925Google Scholar
  158. 158.
    Hwang KS, Lee JH, Park J, Yoon DS, Park JH, Kim TS (2004) Lab Chip 4:547Google Scholar
  159. 159.
    Lee JH, Hwang KS, Park J, Yoon KH, Yoon DS, Kim TS (2005) Biosens Bioelectron 20:2157Google Scholar
  160. 160.
    Gupta A, Akin D, Bashir R (2004) Appl Phys Lett 84:1976Google Scholar
  161. 161.
    Johnson L, Gupta ATK, Ghafoor A, Akin D, Bashir R (2006) Sens Actuators B Chem 115:189Google Scholar
  162. 162.
    Park K, Jang J, Irimia D, Sturgis J, Lee J, Robinson JP, Toner M, Bashir R (2008) Lab Chip 8:1034Google Scholar
  163. 163.
    Capobianco JA, Shih WY, Yuan QA, Adams GP, Shih WH (2008) Rev Sci Instrum 79:076101Google Scholar
  164. 164.
    McGovern JP, Shih WY, Rest R, Purohit M, Pandya Y, Shih WH (2008) Analyst 133:649Google Scholar
  165. 165.
    Mukhopadhyay R, Lorentzen M, Kjems J, Besenbacher F (2005) Langmuir 21:8400Google Scholar
  166. 166.
    Cantion (2006) Cantion.
  167. 167.
    BioScale (2008) BioScale:: biomolecular detection.
  168. 168.
    Concentris (2009) Concentris—nanomechanical cantilever arrays and sensors.
  169. 169.
    Vollmer F, Arnold S, Braun D, Teraoka I, Libchaber A (2003) Biophys J 85:1974Google Scholar
  170. 170.
    Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung CH, Fan Y, Buddharaju KD, Kong J (2007) Anal Chem 79:3291Google Scholar
  171. 171.
    Nanōmix (2007) Nanōmix—breakthrough detection solutions with the nanoelectronic sensation technology.

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Abraham J. Qavi
    • 1
  • Adam L. Washburn
    • 1
  • Ji-Yeon Byeon
    • 1
  • Ryan C. Bailey
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations