Analytical and Bioanalytical Chemistry

, Volume 394, Issue 1, pp 225–233 | Cite as

Measurement of longitudinal sulfur isotopic variations by laser ablation MC-ICP-MS in single human hair strands

  • Rebeca Santamaria-FernandezEmail author
  • Justo Giner Martínez-Sierra
  • J. M. Marchante-Gayón
  • J. Ignacio García-Alonso
  • Ruth Hearn
Original Paper


A new method for the measurement of longitudinal variations of sulfur isotope amount ratios in single hair strands using a laser ablation system coupled to a multicollector inductively coupled plasma mass spectrometer (LA-MC-ICP-MS) is reported here for the first time. Ablation parameters have been optimized for the measurement of sulfur isotope ratios in scalp human hair strands of 80–120-μm thickness and different washing procedures have been evaluated. The repeatability of the method has been tested and the ability to measure sulfur isotopic variations in 1,000-μm-long hair segments has been evaluated. A horse hair sample previously characterized for carbon and nitrogen isotope ratios in an interlaboratory study has been characterized by LA-MC-ICP-MS to be used as an in-house standard for the bracketing of human hair strands. 34S/32S isotope amount ratios have been measured and corrected for instrumental mass bias adopting the external standardization approach using National Institute of Standards and Technology (NIST) RM8553 and full uncertainty budgets have been calculated using the Kragten approach. Results are reported as both 34S/32S isotope amount ratios and δSV-CDT values (sulfur isotopic differences relative to a reference sample expressed in the Vienna Canyon Diablo Troilite (V-CDT) scale) calculated using NIST RM8553, NIST RM8554, and NIST RM8556 to anchor results to the V-CDT scale. The main advantage of the new method versus conventional gas source isotope ratio mass spectrometry measurements is that longitudinal variations in sulfur isotope amount ratios can be resolved. Proof of concept is shown with human scalp hair strands from three individuals, two UK residents and one traveler (long periods of time abroad). The method enables monitoring of longitudinal isotope ratio variations in single hair strands. Absolute ratios are reported and δ34SV-CDT values are plotted for comparison. Slight variations of <1.2‰ were detected in the hair strands from UK residents whereas the traveler presented a variation of >5‰. Thus, the measurement of sulfur isotopic variations in hair samples has potential to be an indicator of geographical origin and recent movements and could be used in combination with isotope ratio measurements in water/foodstuffs from different geographical locations to provide important information in nutritional and geographical studies.


The measurement of longitudinal sulfur isotopic variations by LA-MC-ICP-MS in single human hair strands could play an important role in human identification providing information regarding geographical origin, recent movements and lifestyle of an individual


Mass spectrometry/ICP-MS Laser ablation Forensics Sulfur Isotope ratio MC-ICP-MS 



The work described in this paper was supported by the UK Department for Innovation, Universities, and Skills as part of the National Measurement System Chemical and Biological Metrology Knowledge Base Program. The authors would like to thank the FIRMS network ( for providing horse hair sample and particularly Wolfram Meier-Augenstein for helpful discussions. The authors are grateful for support from the Education and Science Council of the Principado de Asturias (grant BP07-059) towards Justo Giner Martinez-Sierra’s secondment at LGC.


  1. 1.
    Rodushkin I, Axelsson MD (2000) Sci Total Environ 250:83–100CrossRefGoogle Scholar
  2. 2.
    Bermejo-Barrera P, Moreda-Pineiro A, Romero-Barbeito T, Moreda-Pineiro J, Bermejo-Barrera A (1996) Clin Chem 42:1287–1288Google Scholar
  3. 3.
    Rodushkin I, Axelsson MD (2000) Sci Total Environ 262:21–36CrossRefGoogle Scholar
  4. 4.
    Legrand M, Lam R, Jensen-Fontaine M, Salin ED, Man Chan H (2004) J Anal At Spectrom 19:1287–1288CrossRefGoogle Scholar
  5. 5.
    Karpas Z, Lorber A, Sela H, Paz-Tal O, Hagag Y, Kurttio P, Salonen L (2005) Health Phys 89:315–321CrossRefGoogle Scholar
  6. 6.
    Bol R, Marsh J, Heaton THE (2007) Rapid Commun Mass Spectrom 21:2951–2954CrossRefGoogle Scholar
  7. 7.
    Legrand M, Lam R, Passos CJ, Mergler D, Salin ED, Chan HM (2007) Environ Sci Technol 41:593–598CrossRefGoogle Scholar
  8. 8.
    Macko SA, Engel MH, Andrusevich V, Lubec G, O’Connell TC, Hedges RE (1999) Philos Trans R Soc Lond B Biol Sci 354:65–75CrossRefGoogle Scholar
  9. 9.
    Khalique A, Ahmad S, Anjum T, Jaffar M, Shah MH, Shaheen N, Tariq SR, Manzoor S (2005) Environ Monit Assess 104:45–57CrossRefGoogle Scholar
  10. 10.
    Fraser I, Meier-Augenstein W (2007) Rapid Commun Mass Spectrom 21:3279–3285CrossRefGoogle Scholar
  11. 11.
    Fraser I, Meier-Augenstein W, Kalin RM (2006) Rapid Commun Mass Spectrom 20:1109–1116CrossRefGoogle Scholar
  12. 12.
    Klaus JP (2006) Rapid Commun Mass Spectrom 20:2973–2978CrossRefGoogle Scholar
  13. 13.
    O’Connell TC, Hedges REM (2008) Am J Phys Anthropol 108:409–425CrossRefGoogle Scholar
  14. 14.
    Petzke KJ, Boeing H, Metges CC (2005) Rapid Commun Mass Spectrom 19:1392–1400CrossRefGoogle Scholar
  15. 15.
    Bol R, Pflieger C (2002) Rapid Commun Mass Spectrom 16:2195–2200CrossRefGoogle Scholar
  16. 16.
    Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE (2008) Proc Natl Acad Sci USA 105:2788–2793CrossRefGoogle Scholar
  17. 17.
    Qi HP, Coplen TB (2003) Chem Geol 199:183–187Google Scholar
  18. 18.
    Coleman M (2004) Handbook of stable isotope analytical techniques, vol. I. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Krouse HR, Coplen TB (1997) Pure Appl Chem 69:293–295CrossRefGoogle Scholar
  20. 20.
    Mason PRD, Kaspers K, van Bergen MJ (1999) J Anal At Spectrom 14:1067–1074CrossRefGoogle Scholar
  21. 21.
    Evans P, Wolff-Briche C, Fairman B (2001) J Anal At Spectrom 16:964–969CrossRefGoogle Scholar
  22. 22.
    Prohaska T, Latkoczy C, Stingeder G (1999) J Anal At Spectrom 14:1501–1504CrossRefGoogle Scholar
  23. 23.
    Nowell G, Pearson D, Ottley C, Schwieters J, Dowall D (2003) In: Holland G, Tanner S (eds) Plasma source mass spectrometry, applications and emerging technologies. Royal Society of Chemistry, London, ISBN:0-85404-603-8Google Scholar
  24. 24.
    Clough R, Evans P, Catterick T, Evans EH (2006) Anal Chem 78:6126–6132CrossRefGoogle Scholar
  25. 25.
    Santamaria-Fernandez R, Hearn R (2008) Rapid Commun Mass Spectrom 22:401–408CrossRefGoogle Scholar
  26. 26.
    Robbins CR (2002) Chemical and physical behavior of human hair. Springer, New YorkGoogle Scholar
  27. 27.
    Elish E, Karpas Z, Lorber A (2007) J Anal At Spectrom 22:540–546CrossRefGoogle Scholar
  28. 28.
    Stadlbauer C, Reiter C, Patzak B, Stingeder G, Prohaska T (2007) Anal Bioanal Chem 388:593–602CrossRefGoogle Scholar
  29. 29.
    Stadlbauer C, Prohaska T, Reiter C, Knaus A, Stingeder G (2005) Anal Bioanal Chem 383:500–508CrossRefGoogle Scholar
  30. 30.
    Sela H, Karpas Z, Zoiry M, Pickhardt C, Becker SJ (2007) Int J Mass Spectrom 261:199–207CrossRefGoogle Scholar
  31. 31.
    FIRMS newsletter (2006) volume 4 issue 1.
  32. 32.
    Weyer S, Schwieters J (2003) Int J Mass Spectrom 226:355–368CrossRefGoogle Scholar
  33. 33.
    Prohaska T, Latkoczy C, Stingeder G (1999) J Anal At Spectrom 14:1501–1504CrossRefGoogle Scholar
  34. 34.
    Mason PRD, Kaspers K, van Bergen MJ (1999) J Anal At Spectrom 14:1067–1074CrossRefGoogle Scholar
  35. 35.
    Evans P, Wolff-Briche C, Fairman B (2001) J Anal At Spectrom 16:964–969CrossRefGoogle Scholar
  36. 36.
    Santamaria-Fernandez R, Hearn R, Wolff JC (2008) J Anal At Spectrom 23:1294–1299CrossRefGoogle Scholar
  37. 37.
    Ingle CP, Sharp BL, Horstwood MSA, Parrish RR, Lewis DJ (2003) J Anal At Spectrom 18:219–229CrossRefGoogle Scholar
  38. 38.
    Günther D, Heinrich CA (1999) J Anal At Spectrom 14:1363–1368CrossRefGoogle Scholar
  39. 39.
    Allen LA, Leach JJ, Houk RS (1997) Anal Chem 69:2384–2391CrossRefGoogle Scholar
  40. 40.
    Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) J Anal At Spectrom 13:1001–1008CrossRefGoogle Scholar
  41. 41.
    ISO (1995) Guide to the expression of uncertainty in measurement. International Organisation For Standardisation (ISO), GenevaGoogle Scholar
  42. 42.
    Kragten J (1994) Analyst 119:2161–2165CrossRefGoogle Scholar
  43. 43.
    Ding T, Valkiers S, Kipphardt H, De Bievre P, Taylor PDP, Gonfiantini R, Krouse R (2001) Geochim Cosmochim Acta 65:2433–2437CrossRefGoogle Scholar
  44. 44.
    Giner Martinez-Sierra J, Moreno Sanz F, Herrero Espilez P, Marchante Gayon JM, Garcia Alonso JI (2007) J Anal At Spectrom 22:1105–1112CrossRefGoogle Scholar

Copyright information

© LGC Limited 2009

Authors and Affiliations

  • Rebeca Santamaria-Fernandez
    • 1
    Email author
  • Justo Giner Martínez-Sierra
    • 2
  • J. M. Marchante-Gayón
    • 2
  • J. Ignacio García-Alonso
    • 2
  • Ruth Hearn
    • 1
  1. 1.LGCMiddlesexUK
  2. 2.Department of Physical and Analytical ChemistryUniversity of OviedoOviedoSpain

Personalised recommendations