Analytical and Bioanalytical Chemistry

, Volume 393, Issue 4, pp 1217–1224 | Cite as

Size selective sampling using mobile, 3D nanoporous membranes

  • Christina L. Randall
  • Aubri Gillespie
  • Siddarth Singh
  • Timothy G. Leong
  • David H. Gracias
Short Communication

Abstract

We describe the fabrication of 3D membranes with precisely patterned surface nanoporosity and their utilization in size selective sampling. The membranes were self-assembled as porous cubes from lithographically fabricated 2D templates (Leong et al., Langmuir 23:8747–8751, 2007) with face dimensions of 200 μm, volumes of 8 nL, and monodisperse pores ranging in size from approximately 10 μm to 100 nm. As opposed to conventional sampling and filtration schemes where fluid is moved across a static membrane, we demonstrate sampling by instead moving the 3D nanoporous membrane through the fluid. This new scheme allows for straightforward sampling in small volumes, with little to no loss. Membranes with five porous faces and one open face were moved through fluids to sample and retain nanoscale beads and cells based on pore size. Additionally, cells retained within the membranes were subsequently cultured and multiplied using standard cell culture protocols upon retrieval.

Keywords

Microfluidics/Microfabrication Nanoparticles/Nanotechnology Separations/Instrumentation Bioanalytical methods 

Notes

Acknowledgments

This work was supported by the NIH Grant: R21EB007487-01A1 and the NSF Grant MRSEC DMR05-20491. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. We acknowledge Anum Azam for her illustration.

Supplementary material

216_2008_2538_MOESM1_ESM.avi (5.8 mb)
ESM 1Movie clip showing autonomous motion of a Pt-coated membrane in a peroxide solution. This material is available free of charge via the Internet at http://pubs.acs.org (AVI 6049 kb)

References

  1. 1.
    Schafer A (2005) Nanofiltration principles and applications. Elsevier, New York, NYGoogle Scholar
  2. 2.
    Choi JW (2006) Methods Mol Biol 321:65–81Google Scholar
  3. 3.
    Yu H (1998) Anal Chim Acta 376:77–81CrossRefGoogle Scholar
  4. 4.
    Van Emon JM, Gerlach CL, Bowman K (1998) J Chromatogr, B 715:211–228CrossRefGoogle Scholar
  5. 5.
    Singh PC, Singh RK (1996) Trends Food Sci Technol 7:49–58CrossRefGoogle Scholar
  6. 6.
    Yamamoto H, Liljestrand HM, Shimizu Y, Morita M (2003) Environ Sci Technol 37:2646–2657CrossRefGoogle Scholar
  7. 7.
    Nakao S, Kimura S (1982) J Chem Eng Jpn 15:200–205CrossRefGoogle Scholar
  8. 8.
    Athanassiadou P, Grapsa D (2006) Cancer Metastasis Rev 25:507–519CrossRefGoogle Scholar
  9. 9.
    Fleischer RL, Price PB, Walker RM (1965) Science 149:383–393CrossRefGoogle Scholar
  10. 10.
    Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Bréchot C, Paterlini-Bréchot P (2000) Am J Pathol 156:57–63Google Scholar
  11. 11.
    Knudson RP, Alden ER (1980) Pediatrics 65:505–507Google Scholar
  12. 12.
    Leong T, Lester PA, Koh TL, Call E, Gracias DH (2007) Langmuir 23:8747–8751CrossRefGoogle Scholar
  13. 13.
    Graham D (2006) Molecular self-assembly. Sigma Aldrich, Milwaukee WIGoogle Scholar
  14. 14.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1169CrossRefGoogle Scholar
  15. 15.
    L929, ATCC Number: CCL-1 product guide. [cited 21 July 2007]; Available from: http://www.atcc.org/
  16. 16.
    Live/Dead Viability/Cytotoxicity Kit, Invitrogen Number: L3224 product guide.[cited 10 September 2008]; Available from: http://probes.invitrogen.com/
  17. 17.
    Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Angew Chem, Int Ed 41:65–654CrossRefGoogle Scholar
  18. 18.
    Dhillon S (2006) Clinical pharmacokinetics. Pharmaceutical, London UKGoogle Scholar
  19. 19.
    Randall CL, Leong TG, Bassik N, Gracias DH (2007) Adv Drug Delivery Rev 59:1547–1561CrossRefGoogle Scholar
  20. 20.
    Park TH, Shuler ML (2003) Biotechnol Prog 19:243–253CrossRefGoogle Scholar
  21. 21.
    Metallo CM, Mohr JC, Detzel CJ, Pablo JJ, Wie BJ, Palecek SP (2007) Biotechnol Prog 23:18–23CrossRefGoogle Scholar
  22. 22.
    Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Stem Cells 20:249–258CrossRefGoogle Scholar
  23. 23.
    Mohr JC, de Pablo JJ, Palecek SP (2006) Biomat 27:6032–6042CrossRefGoogle Scholar
  24. 24.
    Ye H, Randall CL, Leong TG, Slanac DA, Call EK, Gracias DH (2007) Angew Chem, Int Ed 46:4991–4994CrossRefGoogle Scholar
  25. 25.
    Pihl J, Karlsson M, Chiu DT (2005) Drug Discov Today 10:1377–1383CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Christina L. Randall
    • 1
  • Aubri Gillespie
    • 1
  • Siddarth Singh
    • 2
  • Timothy G. Leong
    • 2
  • David H. Gracias
    • 2
    • 3
  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations