Advertisement

Analytical and Bioanalytical Chemistry

, Volume 393, Issue 4, pp 1135–1141 | Cite as

SERS-based plasmonic nanobiosensing in single living cells

  • Jonathan P. Scaffidi
  • Molly K. Gregas
  • Victoria Seewaldt
  • Tuan Vo-Dinh
Original Paper

Abstract

In this paper, we describe the development and application of a pH-sensitive plasmonics-active fiber-optic nanoprobe suitable for intracellular bioanalysis in single living human cells using surface-enhanced Raman scattering (SERS) detection. The effectiveness and usefulness of SERS-based fiber-optic nanoprobes are illustrated by measurements of intracellular pH in HMEC-15/hTERT immortalized “normal” human mammary epithelial cells and PC-3 human prostate cancer cells. The results indicate that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor cellular microenvironments at the single cell level.

Keywords

Fiber-optic nanoprobe Intracellular pH measurement 

Notes

Acknowledgments

This research was financially supported by the National Institute of Health (NIH R01 EB006201 and NIH R01 ES014774) and the Department of Justice.

References

  1. 1.
    Fleischman M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  2. 2.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20CrossRefGoogle Scholar
  3. 3.
    Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  4. 4.
    Vo-Dinh T, Hiromoto MYK, Begun GM, Moody RL (1984) Anal Chem 56:1667–1670CrossRefGoogle Scholar
  5. 5.
    Vo-Dinh T (1995) Surface-enhanced raman spectroscopy. In: Halevi P (ed) Photonic probes of surfaces. Elsevier, New YorkGoogle Scholar
  6. 6.
    Vo-Dinh T (1998) Trends in Anal Chem 17:557–582CrossRefGoogle Scholar
  7. 7.
    Schatz GC (1984) Accounts Chem Res 17:370–376CrossRefGoogle Scholar
  8. 8.
    Kerker M (1984) Accounts Chem Res 17:271–277CrossRefGoogle Scholar
  9. 9.
    Campion A, Kambhampati P (1998) Chem Soc Rev 27:241–250CrossRefGoogle Scholar
  10. 10.
    Nie S, Emory SR (1997) Science 275:1102–1106CrossRefGoogle Scholar
  11. 11.
    Emory SR, Nie S (1997) Anal Chem 69:2631–2635CrossRefGoogle Scholar
  12. 12.
    Doering WE, Nie S (2003) Anal Chem 75:6171–6176CrossRefGoogle Scholar
  13. 13.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  14. 14.
    Kneipp K, Kneipp H, Deinum G, Itzkan I, Dasari R, Feld MS (1998) Appl Spectrosc 52:175–178CrossRefGoogle Scholar
  15. 15.
    Cao YC, Jin R, Mirkin CA (2002) Science 197:1536–1540CrossRefGoogle Scholar
  16. 16.
    Cao YC, Jin R, Nam J, Thaxton CS, Mirkin CA (2003) J Am Chem Soc 125:14676–14677CrossRefGoogle Scholar
  17. 17.
    Moody RL, Vo-Dinh T, Fletcher WH (1987) Appl Spectrosc 41:966–970CrossRefGoogle Scholar
  18. 18.
    Vo-Dinh T, Miller GH, Bello J, Johnson RD, Moody RL, Alak A, Fletcher WH (1989) Talanta 36:227–234CrossRefGoogle Scholar
  19. 19.
    Enlow PD, Buncick M, Warmack RJ, Vo-Dinh T (1986) Anal Chem 58:1119–1123CrossRefGoogle Scholar
  20. 20.
    Vo-Dinh T, Uziel M, Morrison AL (1987) Appl Spectrosc 41:605–610CrossRefGoogle Scholar
  21. 21.
    Vo-Dinh T, Alak A, Moody RL (1988) Spectrochim Acta B 43:605–615CrossRefGoogle Scholar
  22. 22.
    Vo-Dinh T, Houck TK, Stokes DL (1994) Anal Chem 66:3379–3383CrossRefGoogle Scholar
  23. 23.
    Isola N, Stokes DL, Vo-Dinh T (1998) Anal Chem 70:1352–1356CrossRefGoogle Scholar
  24. 24.
    Wabuyele MB, Vo-Dinh T (2005) Anal Chem 77:7810–7815CrossRefGoogle Scholar
  25. 25.
    Chu BCF, Wahl GM, Orgel LE (1983) Nucleic Acids Res 11:6513–6529CrossRefGoogle Scholar
  26. 26.
    Deckert V, Meisel D, Zenobi R, Vo-Dinh T (1998) Anal Chem 70:2646–2650CrossRefGoogle Scholar
  27. 27.
    Vo-Dinh T, Allain LR, Stokes DL (2002) J Raman Spectrosc 33:511–516CrossRefGoogle Scholar
  28. 28.
    Culha M, Stokes DL, Allain LR, Vo-Dinh T (2003) Anal Chem 75:6196–6201CrossRefGoogle Scholar
  29. 29.
    Stokes DL, Chi ZH, Vo-Dinh T (2004) Appl Spectrosc 58:292–298CrossRefGoogle Scholar
  30. 30.
    Lawson EE, Barry BW, Williams AC, Edwards HGM (1997) J Raman Spectrosc 28:111–117CrossRefGoogle Scholar
  31. 31.
    Mahadevan-Jansen A, Richards-Kortum R (1997) Proc IEEE/EMBS Oct. 30–Nov. 2:2722–2728Google Scholar
  32. 32.
    Kendall C, Stone N, Shepherd N, Geboes K, Warren B, Bennett R, Barr H (2003) J Pathol 200:602–609CrossRefGoogle Scholar
  33. 33.
    Tsubaki M, Srivastava RB, Yu NT (1982) Biochemistry 21:1132–1140CrossRefGoogle Scholar
  34. 34.
    Nagai M, Yoneyama Y, Kitagawa T (1989) Biochemistry 28:2418–2422CrossRefGoogle Scholar
  35. 35.
    Rodgers KR, Su C, Subramaniam S, Spiro TG (1992) J Am Chem Soc 114:3697–3709CrossRefGoogle Scholar
  36. 36.
    Jayaraman V, Rodgers KR, Mukerji I, Spiro TG (1995) Science 269:1843–1848CrossRefGoogle Scholar
  37. 37.
    Rava RP, Spiro TG (1984) J Am Chem Soc 106:4062–4064CrossRefGoogle Scholar
  38. 38.
    Kochendoerfer GG, Kaminaka S, Mathies RA (1997) Biochemistry 36:13153–13159CrossRefGoogle Scholar
  39. 39.
    Miura T, Takeuchi H, Harada I (2005) J Raman Spectrosc 20:667–671CrossRefGoogle Scholar
  40. 40.
    Hildebrandt PG, Copeland RA, Spiro TG, Otlewski J, Laskowski M Jr, Prendergast FG (1988) Biochemistry 27:5426–5433CrossRefGoogle Scholar
  41. 41.
    Michota A, Bukowska J (2003) J Raman Spectrosc 34:21–25CrossRefGoogle Scholar
  42. 42.
    Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Anal Chem 75:5936–5943CrossRefGoogle Scholar
  43. 43.
    Xu S, Ji X, Xu W, Li X, Wang L, Bai Y, Zhao B, Ozaki Y (2004) Analyst 129:63–68CrossRefGoogle Scholar
  44. 44.
    Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Anal Chem 76:7064–7068CrossRefGoogle Scholar
  45. 45.
    Wabuyele MB, Vo-Dinh T (2005) Anal Chem 77:7810–7815CrossRefGoogle Scholar
  46. 46.
    Schwartzberg AM, Oshiro TY, Zhang JZ, Huser T, Talley CE (2006) Anal Chem 78:4732–4736CrossRefGoogle Scholar
  47. 47.
    Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) J Controlled Release 114:343–347CrossRefGoogle Scholar
  48. 48.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) Nano Lett 7:2819–2823CrossRefGoogle Scholar
  49. 49.
    Sun L, Yu C, Irudayaraj J (2007) Anal Chem 79:3981–3988CrossRefGoogle Scholar
  50. 50.
    Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2007) Anal Chem 79:916–922CrossRefGoogle Scholar
  51. 51.
    Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) Nat Biotechnol 26:83–90CrossRefGoogle Scholar
  52. 52.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Nat Acad Sci 100:13549–13554CrossRefGoogle Scholar
  53. 53.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Cancer Lett 209:171–176CrossRefGoogle Scholar
  54. 54.
    Letfullin RR, Joenathan C, George TF, Zharov VP (2006) Nanomedicine 1:473–480CrossRefGoogle Scholar
  55. 55.
    Albrecht AC (1961) J Chem Phys 34:1476–1484CrossRefGoogle Scholar
  56. 56.
    Long DA (2001) The raman effect: a unified treatment of the theory of raman scattering by molecules. Wiley, West SussexGoogle Scholar
  57. 57.
    Ikeda-Saito M, Argade PV, Rousseau DL (1985) FEBS Lett 184:52–55CrossRefGoogle Scholar
  58. 58.
    Wu Q, Balakrishnan G, Pevsner A, Spiro TG (2003) J Phys Chem A 107:8047–8051CrossRefGoogle Scholar
  59. 59.
    Barbosa CJ, Vaillancourt FH, Eltis LD, Blades MW, Turner RFB (2002) J Raman Spectrosc 33:503–510CrossRefGoogle Scholar
  60. 60.
    Jarvis RM, Goodacre R (2004) FEMS Microbiology Lett 232:127–132CrossRefGoogle Scholar
  61. 61.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Nano Lett 6:662–668CrossRefGoogle Scholar
  62. 62.
    Becker C, Hodenius M, Blendinger G, Sechi A, Hieronymus T, Muller-Schulte D, Schmitz-Rode T, Zenke M (2007) J Magn & Magn Mater 311:234–237CrossRefGoogle Scholar
  63. 63.
    Shamsaie A, Jonczyk M, Sturgis J, Robinson JP, Irudayaraj J (2007) J Biomed Optics 12:020502CrossRefGoogle Scholar
  64. 64.
    Tan W, Shi ZY, Smith S, Birnbaum D, Kopelman R (1992) Science 258:778–781CrossRefGoogle Scholar
  65. 65.
    Vo-Dinh T, Alarie JP, Cullum BM, Griffin GD (2000) Nat Biotechnol 18:764–767CrossRefGoogle Scholar
  66. 66.
    Lu J, Rosenzweig Z (2000) Fres J Anal Chem 366:569–575CrossRefGoogle Scholar
  67. 67.
    Schlegel VL, Cotton TM (1991) Anal Chem 63:241–247CrossRefGoogle Scholar
  68. 68.
    Van Duyne RP, Hulteen JC, Treichel DA (1993) J Chem Phys 99:2101–2115CrossRefGoogle Scholar
  69. 69.
    Roark SE, Rowlen KL (1994) Anal Chem 66:261–270CrossRefGoogle Scholar
  70. 70.
    Semin DJ, Rowlen KL (1994) Anal Chem 66:4324–4331CrossRefGoogle Scholar
  71. 71.
    Roark SE, Semin DJ, Lo A, Skodje RT, Rowlen KL (1995) Anal Chim Acta 307:341–353CrossRefGoogle Scholar
  72. 72.
    Lacy WB, Williams JM, Wenzler LA, Beebe TP Jr, Harris JM (1996) Anal Chem 68:1003–1011CrossRefGoogle Scholar
  73. 73.
    Whitney AV, Van Duyne RP, Casadio F (2005) Proc SPIE 5993:59930K1–59930K10Google Scholar
  74. 74.
    Li X, Xu W, Jia H, Wang X, Zhao B, Li B, Ozaki Y (2005) Thin Solid Films 474:181–185CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jonathan P. Scaffidi
    • 1
    • 2
  • Molly K. Gregas
    • 1
    • 2
  • Victoria Seewaldt
    • 2
    • 3
  • Tuan Vo-Dinh
    • 1
    • 2
    • 4
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Fitzpatrick Institute for PhotonicsDuke UniversityDurhamUSA
  3. 3.Division of Medical OncologyDuke School of MedicineDurhamUSA
  4. 4.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations