Analytical and Bioanalytical Chemistry

, Volume 393, Issue 2, pp 437–444 | Cite as

Imprinted nanomaterials: a new class of synthetic receptors

  • Kevin Flavin
  • Marina ResminiEmail author


The molecular imprinting approach provides a unique opportunity for the creation of three-dimensional cavities with tailored recognition properties. Over the last decade this field has expanded considerably, across a variety of disciplines, leading to novel approaches and many potential applications. Progress in the field of materials science has led to significant breakthroughs and the application of the imprinting approach to novel polymeric formats offers new insights and attractive methods for the preparation of synthetic receptors. In particular, nanomaterials have received considerable attention in the developing field of nanotechnology. With a large number of recent developments in the field of molecular imprinting available, this article is focused on a selection of new systems, in particular the different formats of nanomaterials, such as nanogels, nanofibres, nanowires and nanotubes.


Molecular imprinting Molecularly imprinted polymers Synthetic receptors Sensing Catalytic nanomaterials Nanogels 


  1. 1.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504CrossRefGoogle Scholar
  2. 2.
    Wulff G, Sarhan A (1972) Angew Chem Int Ed Engl 11:341Google Scholar
  3. 3.
    Arshady R, Mosbach K (1981) Macromol Chem Phys Makromol Chem 182:687–692Google Scholar
  4. 4.
    Pérez N, Whitcombe MJ, Vulfson EN (2000) J Appl Polym Sci 77:1851–1859CrossRefGoogle Scholar
  5. 5.
    Pérez N, Whitcombe MJ, Vulfson EN (2001) Macromolecules 34:830–836CrossRefGoogle Scholar
  6. 6.
    Carter SR, Rimmer S (2002) Adv Mater 14:667–670CrossRefGoogle Scholar
  7. 7.
    Pérez-Moral N, Mayes AG (2004) Langmuir 20:3775–3779CrossRefGoogle Scholar
  8. 8.
    Markowitz MA, Deng G, Gaber BP (2000) Langmuir 16:6148–6155CrossRefGoogle Scholar
  9. 9.
    Markowitz MA, Kust PR, Deng G, Schoen PE, Dordick JS, Clark DS, Gaber BP (2000) Langmuir 16:1759–1765CrossRefGoogle Scholar
  10. 10.
    Ye L, Cormack PAG, Mosbach K (1999) Anal Commun 36:35–38CrossRefGoogle Scholar
  11. 11.
    Ye L, Mosbach K (2001) J Am Chem Soc 123:2901–2902CrossRefGoogle Scholar
  12. 12.
    Spégel P, Schweitz L, Nilsson S (2003) Anal Chem 75:6608–6613CrossRefGoogle Scholar
  13. 13.
    Ciardelli G, Cioni B, Cristallini C, Barbani N, Silvestri D, Giusti P (2004) Biosens Bioelectron 20:1083–1090CrossRefGoogle Scholar
  14. 14.
    Biffis A, Graham NB, Siedlaczek G, Stalberg S, Wulff G (2001) Macromol Chem Phys 202:163–171CrossRefGoogle Scholar
  15. 15.
    Maddock SC, Pasetto P, Resmini M (2004) Chem Commun 536–537Google Scholar
  16. 16.
    Pasetto P, Maddock SC, Resmini M (2005) Anal Chim Acta 542:66–75CrossRefGoogle Scholar
  17. 17.
    Wulff G, Chong BO, Kolb U (2006) Angew Chem Int Ed 45:2955–2958CrossRefGoogle Scholar
  18. 18.
    Carboni D, Flavin K, Servant A, Gouverneur V, Resmini M (2008) Chem Eur J 14:7059–7065Google Scholar
  19. 19.
    Hunt CE, Pasetto P, Ansell RJ, Haupt K (2006) Chem Commun 1754–1756Google Scholar
  20. 20.
    Yang HH, Zhang SQ, Tan F, Zhuang ZX, Wang XR (2005) J Am Chem Soc 127:1378–1379CrossRefGoogle Scholar
  21. 21.
    Li Y, Yang HH, You QH, Zhuang ZX, Wang XR (2006) Anal Chem 78:317–320CrossRefGoogle Scholar
  22. 22.
    Xie CG, Zhang ZP, Wang DP, Guan GJ, Gao DM, Liu JH (2006) Anal Chem 78:8339–8346CrossRefGoogle Scholar
  23. 23.
    Wang HJ, Zhou WH, Yin XF, Zhuang ZX, Yang HH, Wang XR (2006) J Am Chem Soc 128:15954–15955CrossRefGoogle Scholar
  24. 24.
    Chronakis IS, Jakob A, Hagström B, Ye L (2006) Langmuir 22:8960–8965CrossRefGoogle Scholar
  25. 25.
    Yoshimatsu K, Ye L, Lindberg J, Chronakis IS (2008) Biosens Bioelectron 23:1208–1215CrossRefGoogle Scholar
  26. 26.
    Yoshimatsu K, Ye L, Stenlund P, Chronakis IS (2008) Chem Commun 2022–2024Google Scholar
  27. 27.
    Chronakis IS, Milosevic B, Frenot A, Ye L (2006) Macromolecules 39:357–361CrossRefGoogle Scholar
  28. 28.
    Zimmerman SC, Lemcoff NG (2004) Chem Commun 5–14Google Scholar
  29. 29.
    Ishi-i T, Nakashima K, Shinkai S (1998) Chem Commun 1047–1048Google Scholar
  30. 30.
    Zimmerman SC, Wendland MS, Rakow NA, Zharov I, Suslick KS (2002) Nature 418:399–403CrossRefGoogle Scholar
  31. 31.
    Beil JB, Zimmerman SC (2004) Chem Commun 488–489Google Scholar
  32. 32.
    Lin CI, Joseph AK, Chang CK, Lee YD (2004) Biosens Bioelectron 20:127–131CrossRefGoogle Scholar
  33. 33.
    Lin CI, Joseph AK, Chang CK, Lee YD (2004) J Chromatogr A 1027:259–262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of Biological and Chemical SciencesQueen Mary, University of LondonLondonUK

Personalised recommendations