Analytical and Bioanalytical Chemistry

, Volume 393, Issue 2, pp 689–697 | Cite as

Speciation of arsenic trioxide metabolites in blood cells and plasma of a patient with acute promyelocytic leukemia

  • Yuta Yoshino
  • Bo Yuan
  • Shin-ich Miyashita
  • Noriyoshi Iriyama
  • Akira Horikoshi
  • Osamu Shikino
  • Hiroo Toyoda
  • Toshikazu Kaise
Original Paper


Arsenic trioxide (As2O3) has been widely accepted as the second-best choice for the treatment of relapsed and refractory acute promyelocytic leukemia (APL) patients. However, a few studies have been conducted on a detailed speciation of As2O3 metabolites in blood samples of patients. To clarify the speciation of arsenic, the blood samples were collected at various time points from a patient with APL after remission induction therapy and during consolidation therapy. The total amounts of arsenic in blood cells and plasma, and the plasma concentrations of inorganic arsenic and methylated metabolites were determined by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography/ICP-MS, respectively. The total amounts of arsenic in the blood cells were 4–10 times higher than those in plasma. Among all arsenic metabolites, the pentavalent arsenate (AsV) in plasma was more readily eliminated. During the drug-withdrawal period, the initial plasma concentrations of trivalent arsenic (AsIII) declined more rapidly than those of methylarsonic acid and dimethlyarsinic acid, which are known as the major methylated metabolites of AsIII. On the other hand, during the consecutive administration in the consolidation therapy period, the plasma concentrations of total arsenic and arsenic metabolites increased with time. In conclusion, these results may support the idea that methylated metabolites of As2O3 contribute to the efficacy of arsenic in APL patients. These results also suggest that detailed studies on the pharmacokinetics as well as the pharmacodynamics of As2O3 in the blood cells from APL patients should be carried out to provide an effective treatment protocol.


Acute promyelocytic leukemia Arsenic trioxide Trisenox Arsenic metabolite High-performance liquid chromatography/inductively coupled plasma mass spectrometry Arsenic speciation 



This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology and by the Promotion and Mutual Aid Corporation for Private Schools of Japan. We acknowledge Nippon Shinyaku Co. Ltd. for generous supply of Trisenox®.

Supplementary material

216_2008_2487_MOESM1_ESM.pdf (14 kb)
Table S1 Analytical Conditions of ICP-MS (PDF 14.05 KB)


  1. 1.
    Goddard AD, Borrow J, Freemont PS, Solomon E (1991) Science 254:1371–1374CrossRefGoogle Scholar
  2. 2.
    Tong JH, Dong S, Geng JP, Huang W, Wang ZY, Sun GL, Chen SJ, Chen Z, Larsen CJ, Berger R (1992) Oncogene 7:311–316Google Scholar
  3. 3.
    de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) Nature 347:558–561CrossRefGoogle Scholar
  4. 4.
    Melnick A, Licht JD (1999) Blood 93:3167–3215Google Scholar
  5. 5.
    Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH (1999) Blood 93:4131–4143Google Scholar
  6. 6.
    Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Blood 89:3354–3360Google Scholar
  7. 7.
    Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP Jr (1998) N Engl J Med 339:1341–1348CrossRefGoogle Scholar
  8. 8.
    Cohen MH, Hirschfeld S, Flamm Honig S, Ibrahim A, Johnson JR, O’Leary JJ, White RM, Williams GA, Pazdur R (2001) Oncologist 6:4–11CrossRefGoogle Scholar
  9. 9.
    Ohnishi K, Yoshida H, Shigeno K, Nakamura S, Fujisawa S, Naito K, Shinjo K, Fujita Y, Matsui H, Sahara N, Takeshita A, Satoh H, Terada H, Ohno R (2002) Leukemia 16:617–622CrossRefGoogle Scholar
  10. 10.
    Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, Stone RM, Kalaycio M, Scheinberg DA, Steinherz P, Sievers EL, Coutré S, Dahlberg S, Ellison R, Warrell RP Jr (2001) J Clin Oncol 19:3852–3860Google Scholar
  11. 11.
    Aposhian HV (1997) Annu Rev Pharmacol Toxicol 37:397–419CrossRefGoogle Scholar
  12. 12.
    Kitchin KT (2001) Toxicol Appl Pharmacol 172:249–261CrossRefGoogle Scholar
  13. 13.
    Del Razo LM, Styblo M, Cullen WR, Thomas DJ (2001) Toxicol Appl Pharmacol 174:282–293CrossRefGoogle Scholar
  14. 14.
    Aposhian HV, Gurzau ES, Le XC, Gurzau A, Healy SM, Lu X, Ma M, Yip L, Zakharyan RA, Maiorino RM, Dart RC, Tircus MG, Gonzalez-Ramirez D, Morgan DL, Avram D, Aposhian MM (2000) Chem Res Toxicol 13:693–697CrossRefGoogle Scholar
  15. 15.
    Wang Z, Zhou J, Lu X, Gong Z, Le XC (2004) Chem Res Toxicol 17:95–103CrossRefGoogle Scholar
  16. 16.
    Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Arch Toxicol 74:289–299CrossRefGoogle Scholar
  17. 17.
    Chen GQ, Zhou L, Styblo M, Walton F, Jing Y, Weinberg R, Chen Z, Waxman S (2003) Cancer Res 63:1853–1859Google Scholar
  18. 18.
    Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) Toxicol Appl Pharmacol 198:327–335CrossRefGoogle Scholar
  19. 19.
    Fukai Y, Hirata M, Ueno M, Ichikawa N, Kobayashi H, Saitoh H, Sakurai T, Kinoshita K, Kaise T, Ohta S (2006) Biol Pharm Bull 29:1022–1027CrossRefGoogle Scholar
  20. 20.
    Fujisawa S, Ohno R, Shigeno K, Sahara N, Nakamura S, Naito K, Kobayashi M, Shinjo K, Takeshita A, Suzuki Y, Hashimoto H, Kinoshita K, Shimoya M, Kaise T, Ohnishi K (2007) Cancer Chemother Pharmacol 59:485–493CrossRefGoogle Scholar
  21. 21.
    Shibata Y, Yoshinaga J, Morita M (1994) Appl Organomet Chem 8:249–251CrossRefGoogle Scholar
  22. 22.
    Douer D, Tallman MS (2005) J Clin Oncol 23:2396–2410CrossRefGoogle Scholar
  23. 23.
    Raffoux E, Rousselot P, Poupon J, Daniel MT, Cassinat B, Delarue R, Taksin AL, Réa D, Buzyn A, Tibi A, Lebbé G, Cimerman P, Chomienne C, Fermand JP, de Thé H, Degos L, Hermine O, Dombret H (2003) J Clin Oncol 21:2326–2334CrossRefGoogle Scholar
  24. 24.
    Rousselot P, Larghero J, Arnulf B, Poupon J, Royer B, Tibi A, Madelaine-Chambrin I, Cimerman P, Chevret S, Hermine O, Dombret H, Claude Brouet J, Paul Fermand J (2004) Leukemia 18:1518–1521CrossRefGoogle Scholar
  25. 25.
    Westervelt P, Brown RA, Adkins DR, Khoury H, Curtin P, Hurd D, Luger SM, Ma MK, Ley TJ, DiPersio JF (2001) Blood 98:266–271CrossRefGoogle Scholar
  26. 26.
    Lu M, Wang H, Li XF, Lu X, Cullen WR, Arnold LL, Cohen SM, Le XC (2004) Chem Res Toxicol 17:1733–1742CrossRefGoogle Scholar
  27. 27.
    Benramdane L, Accominotti M, Fanton L, Malicier D, Vallon JJ (1999) Clin Chem 45:301–306Google Scholar
  28. 28.
    Slejkovec Z, Falnoga I, Goessler W, van Elteren JT, Raml R, Podgornik H, Cernelc P (2008) Anal Chim Acta 607:83–91CrossRefGoogle Scholar
  29. 29.
    Naranmandura H, Suzuki KT (2008) Toxicol Appl Pharmacol 227:390–399CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yuta Yoshino
    • 1
  • Bo Yuan
    • 1
  • Shin-ich Miyashita
    • 2
  • Noriyoshi Iriyama
    • 3
  • Akira Horikoshi
    • 3
  • Osamu Shikino
    • 4
  • Hiroo Toyoda
    • 1
  • Toshikazu Kaise
    • 2
  1. 1.Department of Clinical Molecular Genetics, Faculty of PharmacyTokyo University of Pharmacy & Life SciencesTokyoJapan
  2. 2.Laboratory of Environmental ChemodynamicsTokyo University of Pharmacy & Life SciencesTokyoJapan
  3. 3.Department of Internal Medicine, School of MedicineNihon University Nerima Hikarigaoka HospitalTokyoJapan
  4. 4.PerkinElmer Japan Co., Ltd.YokohamaJapan

Personalised recommendations