Analytical and Bioanalytical Chemistry

, Volume 393, Issue 4, pp 1165–1172 | Cite as

Surface plasmon resonance study on HIV-1 integrase strand transfer activity

  • Hana Vaisocherová
  • Jan SnášelEmail author
  • Tomáš Špringer
  • Hana Šípová
  • Ivan Rosenberg
  • Josef Štěpánek
  • Jiří HomolaEmail author
Original Paper


Understanding the molecular mechanism of HIV-1 integrase (IN) activity is critical to find functional inhibitors for an effective AIDS therapy. A robust, fast, and sensitive method for studying IN activity is required. In this work, an assay for real-time label-free monitoring of the IN activity based on surface plasmon resonance was developed. This assay enabled direct monitoring of the integration of a viral doubled-stranded (ds) DNA into the host genome. The strand transfer reaction was detected by using two different DNA targets: supercoiled plasmid (pUC 19) and short palindrome oligonucleotide. The effect of the length of the DNA target on the possibility to monitor the actual process of the strand transfer reaction is discussed. The surface density of integrated ds-DNA was determined. IN binding to the oligonucleotide complexes and model DNA triplexes in the presence of various divalent ions as metal cofactors was investigated as well. The assay developed can serve as an important analytical tool to search for potential strand transfer reaction inhibitors as well as for the study of compounds interfering with the binding of ds long terminal repeats–IN complexes with the host DNA.

HIV-1 integrase strand transfer activity was monitored in real time using a multichannel surface plasmon resonance biosensor.


Surface plasmon resonance Biosensor HIV-1 integrase Strand transfer reaction 



The authors would like to thank Kamila Moquin and Praskovia Boltovets for help with the experiments and Sergey Leshkov for deposition of thin films for SPR chips. This research was supported by the Czech National Science Foundation (202/05/0628) and the Academy of Sciences of the Czech Republic (AV0Z20670512, 203/05/P557, and KAN200670701).

Supplementary material

216_2008_2485_MOESM1_ESM.pdf (258 kb)
ESM 1 (PDF 264 kb).


  1. 1.
    Yi J, Asante-Appiah E, Skalka AM (1999) Biochemistry 38:8458CrossRefGoogle Scholar
  2. 2.
    Snášel J, Rejman D, Liboska R, Točík Z, Ruml T, Rosenberg I, Pichová I (2001) Eur J Biochem 268:980CrossRefGoogle Scholar
  3. 3.
    Esposito D, Craigie R (1998) EMBO J 17:5832CrossRefGoogle Scholar
  4. 4.
    Hiom K, Gellert M (1997) Cell 88:65CrossRefGoogle Scholar
  5. 5.
    Sherman PA, Fyfe JA (1990) Proc Natl Acad Sci USA 87:5119CrossRefGoogle Scholar
  6. 6.
    Craigie R, Mizuuchi K, Bushman FD, Engelman A (1991) Nucleic Acids Res 19:2729CrossRefGoogle Scholar
  7. 7.
    Snášel J, Krejčík Z, Jencová V, Rosenberg I, Ruml T, Alexandratos J, Gustchina A, Pichová I (2005) FEBS J 272:203CrossRefGoogle Scholar
  8. 8.
    Lee SP, Censullo ML, Kim HG, Knutson JR, Han MK (1995) Anal Biochem 227:295CrossRefGoogle Scholar
  9. 9.
    Kamimori H, Unabia S, Thomas WG, Aguilar MI (2005) Anal Sci 21:171CrossRefGoogle Scholar
  10. 10.
    Homola J (2006) Surface plasmon resonance based sensors. Springer, BerlinGoogle Scholar
  11. 11.
    Homola J (2008) Chem Rev 108:462CrossRefGoogle Scholar
  12. 12.
    Ramcharan J, Colleluori DM, Merkel G, Andrake MD, Skalka AM (2006) Retrovirology 3:34CrossRefGoogle Scholar
  13. 13.
    Du L, Shen L, Yu Z, Chen J, Guo Y, Tang Y, Shen X, Jiang H (2008) ChemMedChem 3:173CrossRefGoogle Scholar
  14. 14.
    Herschhorn A, Oz-Gleenberg I, Hizi A (2008) Biochem J 412:163CrossRefGoogle Scholar
  15. 15.
    Zhao Q, Ma L, Jiang S, Lu H, Liu S, He Y, Strick N, Neamati N, Debnath AK (2005) Virology 339:213CrossRefGoogle Scholar
  16. 16.
    Dostálek J, Vaisocherová H, Homola J (2005) Sens Actuators B Chem 108:758CrossRefGoogle Scholar
  17. 17.
    Vaisocherová H, Mrkvová K, Piliarik M, Jinoch P, Šteinbachová M, Homola J (2007) Biosens Bioelectron 22:1020CrossRefGoogle Scholar
  18. 18.
    Vaisocherová H, Zítová A, Lachmanová M, Štěpának J, Králíková Š, Liboska R, Rejman D, Rosenberg I, Homola J (2006) Biopolymers 82:394CrossRefGoogle Scholar
  19. 19.
    Coman D, Russu IM (2004) Nucleic Acids Res 32:878CrossRefGoogle Scholar
  20. 20.
    Mazumder A, Engelman A, Craigie R, Fesen M, Pommier Y (1994) Nucleic Acids Res 22:1037CrossRefGoogle Scholar
  21. 21.
    Engelman A, Bushman FD, Craigie R (1993) EMBO J 12:3269Google Scholar
  22. 22.
    Guiot E, Carayon K, Delelis O, Simon F, Tauc P, Zubin E, Gottikh M, Mouscadet JF, Brochon JC, Deprez E (2006) J Biol Chem 281:22707CrossRefGoogle Scholar
  23. 23.
    Baranova S, Tuzikov FV, Zakharova OD, Tuzikova NA, Calmels C, Litvak S, Tarrago-Litvak L, Parissi V, Nevinsky GA (2007) Nucleic Acids Res 35:975CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hana Vaisocherová
    • 1
  • Jan Snášel
    • 2
    Email author
  • Tomáš Špringer
    • 1
    • 3
  • Hana Šípová
    • 1
    • 3
  • Ivan Rosenberg
    • 2
  • Josef Štěpánek
    • 3
  • Jiří Homola
    • 1
    Email author
  1. 1.Institute of Photonics and ElectronicsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations