Analytical and Bioanalytical Chemistry

, Volume 393, Issue 4, pp 1199–1207

Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature

  • Stefan Nagl
  • Matthias I. J. Stich
  • Michael Schäferling
  • Otto S. Wolfbeis
Original Paper


Chemical sensing, imaging and microscopy based on the use of fluorescent probes has so far been limited almost exclusively to the detection of a single parameter at a time. We present a scheme that can overcome this limitation by enabling optical sensing of two parameter simultaneously and even at identical excitation and emission wavelengths of two probes provided (a) their decay times are different enough to enable two time windows to be recorded, and (b) the emission of the shorter-lived probe decays to below the detectable limit while that of the other still can be measured. We refer to this new scheme as the dual lifetime determination (DLD) method and show that it can be widely varied by appropriate choice of probes and experimental settings. DLD is demonstrated to work by sensing oxygen and temperature independently from each other by making use of two probes, one for oxygen (a platinum porphyrin dissolved in polystyrene), and one for temperature [a europium complex dissolved in poly(vinyl methylketone)]. DLD was applied to monitor the consumption of oxygen in the glucose oxidase-catalyzed oxidation of glucose at varying temperatures. The scheme is expected to have further applications in cellular assays and biophysical imaging.


Principle behind the dual lifetime determination (DLD) method


Dual sensing Luminescence lifetime Oxygen sensing Temperature sensing Fluorescence imaging 


  1. 1.
    McDonagh C, Burke CS, MacCraith BD (2008) Chem Rev 108:400–422CrossRefGoogle Scholar
  2. 2.
    Eggins BR (2002) Chemical sensors and biosensors. Wiley, ChichesterGoogle Scholar
  3. 3.
    Wolfbeis OS (2008) Anal Chem 80:4269–4283 and previous biannual reviewsCrossRefGoogle Scholar
  4. 4.
    Borisov SM, Wolfbeis OS (2008) Chem Rev 108:423–461CrossRefGoogle Scholar
  5. 5.
    Wallrabe H, Periasamy A (2005) Curr Opin Biotechnol 16:19–27CrossRefGoogle Scholar
  6. 6.
    Colyer RA, Lee C, Gratton E (2008) Microsc Res Tech 71:201–213CrossRefGoogle Scholar
  7. 7.
    Zheng Q, Xu G, Prasad PN (2008) Chem Eur J 14:5812–5819CrossRefGoogle Scholar
  8. 8.
    Bonnist EY, Jones AC (2008) Chem Phys Chem 8:1121–1129Google Scholar
  9. 9.
    Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Nat Rev Mol Cell Biol 3:906–918CrossRefGoogle Scholar
  10. 10.
    Wolfbeis OS (ed) (2008) Fluorescence methods and applications: spectroscopy, imaging and probes. Ann NY Acad Sci 1430:1–388Google Scholar
  11. 11.
    Zheng Q, Xu G, Prasad PN (2008) Chem Eur J 14:5812–5819CrossRefGoogle Scholar
  12. 12.
    Zhang L, Clark RJ, Zhu L (2008) Chem Eur J 14:2894–2903CrossRefGoogle Scholar
  13. 13.
    Chen X, Wang X, Wang S, Shi W, Wang K, Ma H (2008) Chem Eur J 14:4719–4724CrossRefGoogle Scholar
  14. 14.
    Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, WeinheimGoogle Scholar
  15. 15.
    Uchiyama S, Iwai K, de Silva AP (2008) Angew Chem Int Ed 47:4667–4669CrossRefGoogle Scholar
  16. 16.
    Coyle LM, Gouterman M (1999) Sens Actuators B61:92–99Google Scholar
  17. 17.
    Koese ME, Omar A, Virgin CA, Carroll BF, Schanze KS (2005) Langmuir 21:9110–9120CrossRefGoogle Scholar
  18. 18.
    Borisov SM, Krause C, Arain S, Wolfbeis OS (2006) Adv Mat 18:1511–1516CrossRefGoogle Scholar
  19. 19.
    Schroeder CR, Neurauter G, Klimant I (2007) Microchim Acta 158:205–218CrossRefGoogle Scholar
  20. 20.
    Nagl S, Wolfbeis OS (2007) Analyst 132:507–511CrossRefGoogle Scholar
  21. 21.
    Woods RJ, Scypinski S, Love LJC, Ashworth HA (1984) Anal Chem 56:1395–1400CrossRefGoogle Scholar
  22. 22.
    Sharman KK, Periasamy A, Ashworth H, Demas JN, Snow NH (1999) Anal Chem 71:947–952CrossRefGoogle Scholar
  23. 23.
    Ballew RM, Demas JN (1989) Anal Chem 61:30–33CrossRefGoogle Scholar
  24. 24.
    Wu Z, Lin M, Schaeferling M, Duerkop A, Wolfbeis OS (2005) Anal Biochem 340:66–73CrossRefGoogle Scholar
  25. 25.
    Schaeferling M, Wu M, Enderlein J, Bauer H, Wolfbeis OS (2003) Appl Spectrosc 57:1386–1392CrossRefGoogle Scholar
  26. 26.
    Moore C, Chan SP, Demas JN, DeGraff BA (2004) Appl Spectrosc 58:603–607CrossRefGoogle Scholar
  27. 27.
    Hradil J, Davis C, Mongey K, McDonagh C, MacCraith BD (2002) Meas Sci Technol 13:1552–1557CrossRefGoogle Scholar
  28. 28.
    Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) Adv Funct Mater 18:1399–1406CrossRefGoogle Scholar
  29. 29.
    Yang C, Fu LM, Wang Y, Zhang JP, Wong WT, Ai XC, Qiao YF, Zou BS, Gui LL (2004) Angew Chem Int Ed 43:5009–5013Google Scholar
  30. 30.
    Borisov SM, Wolfbeis OS (2006) Anal Chem 78:5094–5101CrossRefGoogle Scholar
  31. 31.
    Nagl S, Baleizão C, Borisov SM, Schaeferling M, Berberan-Santos MN, Wolfbeis OS (2007) Angew Chem Int Ed 46:2317–2319CrossRefGoogle Scholar
  32. 32.
    Richardson FS (1982) Chem Rev 82:541–552CrossRefGoogle Scholar
  33. 33.
    Reifernberger JG, Ge P, Selvin PR (2005) Rev Fluoresc 23:99–431Google Scholar
  34. 34.
    Hemmilae I, Laitala V (2005) J Fluoresc 15:529–542CrossRefGoogle Scholar
  35. 35.
    Lee S, Okura I (1997) Anal Comm 34:185–188CrossRefGoogle Scholar
  36. 36.
    Bizzarri A Koehler H, Cajlakovic M, Pasic A, Schaupp L, Klimant I, Ribitsch V (2006) Anal Chim Acta 573–574:48–56CrossRefGoogle Scholar
  37. 37.
    Amao Y (2003) Microchim Acta 143:1–12 (review)CrossRefGoogle Scholar
  38. 38.
    Choi MMF (2004) Microchim Acta 148:107–132 (review)CrossRefGoogle Scholar
  39. 39.
    Liebsch G, Klimant I, Wolfbeis OS (1999) Adv Mater 11:1296–1299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Stefan Nagl
    • 1
  • Matthias I. J. Stich
    • 1
  • Michael Schäferling
    • 1
  • Otto S. Wolfbeis
    • 1
  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations