Advertisement

Chemosensors in environmental monitoring: challenges in ruggedness and selectivity

  • Peter A. LieberzeitEmail author
  • Franz L. Dickert
Trends

Abstract

Environmental analysis is a potential key application for chemical sensors owing to their inherent ability to detect analytes on-line and in real time in distributed systems. Operating a chemosensor in a natural environment poses substantial challenges in terms of ruggedness, long-term stability and calibration. This article highlights current trends of achieving both the necessary selectivity and ruggedness: one way is deploying sensor arrays consisting of robust broadband sensors and extracting information via chemometrics. If using only a single sensor is desired, molecularly imprinted polymers offer a straightforward way for designing artificial recognition materials. Molecularly imprinted polymers can be utilized in real-life environments, such as water and air, aiming at detecting analytes ranging from small molecules to entire cells.

Keywords

Environmental monitoring In situ sensing Artificial recognition materials Real-life application Molecular imprinting 

References

  1. 1.
    Byrne R, Diamond D (2006) Nat Mater 5:421–424CrossRefGoogle Scholar
  2. 2.
    Greenwood R, Mills GA, Roig B (2007) TrAC, Trends Anal Chem 26:263–267CrossRefGoogle Scholar
  3. 3.
    Johnson KS, Needoba JA, Riser SC, Showers WJ (2007) Chem Rev 107:623–640CrossRefGoogle Scholar
  4. 4.
    Chapman H, Owusu Y (2008) IEEE Sens J 8:203–209CrossRefGoogle Scholar
  5. 5.
    Li SY, Kim YG, Jung S, Song HS, Lee SM (2007) Sens Actuators B 120:368–377Google Scholar
  6. 6.
    Oh M, Seo MW, Lee S, Park J (2008) J Contam Hydrol 96:69–82CrossRefGoogle Scholar
  7. 7.
    Lee JH, Jang A, Bhadri PR, Myers RR, Timmons W, Beyette FR Jr, Bishop PL, Papautsky I (2006) Sens Actuators B 115:220–226CrossRefGoogle Scholar
  8. 8.
    Je CH, Stone R, Oberg G (2007) Sci Total Environ 382:364–374CrossRefGoogle Scholar
  9. 9.
    Runkle RC, Brodzinski RL, Jordan DV, Hartman JS, Hensley WK, Maynard MA, Sliger WA, Smart JE, Todd LC (2005) Sensors 5:51–60CrossRefGoogle Scholar
  10. 10.
    Tsujita W, Yoshino A, Ishida H, Moriizumi T (2005) Sens Actuators B 110:304–311CrossRefGoogle Scholar
  11. 11.
    Feng J, Qu G, Potknojak M (2006) IEEE Sens J 6:1571–1579CrossRefGoogle Scholar
  12. 12.
    Bourgeois W, Romain AC, Nicolas J, Stuetz RM (2003) J Environ Monit 5:852–860CrossRefGoogle Scholar
  13. 13.
    Nake A, Dubreuil B, Raynaud C, Talou T (2005) Sens Actuators B 106:36–39CrossRefGoogle Scholar
  14. 14.
    Nix MB, Homer ML, Kisor AK, Soler J, Torres J, Manatt K, Jewell A, Ryan MA (2007) IEEE Potentials 26:18–24CrossRefGoogle Scholar
  15. 15.
    Palacios MA, Nishiyabu R, Marquez M, Anzenbacher P Jr (2007) 129:7538–7544Google Scholar
  16. 16.
    Fraga C, Melville AM, Wright BW (2007) Analyst 132:230–236CrossRefGoogle Scholar
  17. 17.
    Nicolas J, Romain AC (2004) Sens Actuators B 99:384–392CrossRefGoogle Scholar
  18. 18.
    Sugimoto I, Nagaoka T, Seyama M, Nakamura M, Takahashi K (2007) Sens Actuators B 124:53–61CrossRefGoogle Scholar
  19. 19.
    Sarkar P, Ghosh D, Bhattacharya D, Kataky R, Setford SJ, White SF, Turner APF (2005) J Chem Technol Biotechnol 80:1389–1395CrossRefGoogle Scholar
  20. 20.
    Sapsford KE, Bradburne C, Delehanty JB, Mednitz IL (2008) Mater Today 11:38–49CrossRefGoogle Scholar
  21. 21.
    Borisov SM, Wolbeis OS (2008) Chem Rev (2008) 108:423–461CrossRefGoogle Scholar
  22. 22.
    Ye L, Haupt K (2004) Anal Bioanal Chem 378:1887–1897CrossRefGoogle Scholar
  23. 23.
    Hall AJ, Emgenbroich M, Sellergren B (2005) Top Curr Chem 249:317–349Google Scholar
  24. 24.
    Lieberzeit PA, Afzal A, Podlipna D, Krassnig S, Blumenstock H, Dickert FL (2007) Sens Actuators B 126:153–158CrossRefGoogle Scholar
  25. 25.
    Albano DR, Sevilla F III (2007) Sens Actuators B 121:129–134CrossRefGoogle Scholar
  26. 26.
    Suedee R, Intakong W, Lieberzeit PA, Wanichapichart P, Chooto P, Dickert FL (2007) J Appl Polym Sci 106:3861–3871CrossRefGoogle Scholar
  27. 27.
    Sánchez-Barragán I, Karim K, Costa-Fernández JM, Piletsky SA, Sanz-Medel A (2007) Sens Actuators B 123:798–804CrossRefGoogle Scholar
  28. 28.
    Lieberzeit PA, Rehman A, Najafi B, Dickert FL (2008) Anal Bioanal Chem 391:2897–2903CrossRefGoogle Scholar
  29. 29.
    Lieberzeit PA, Afzal A, Glanznig G, Dickert FL (2007) Anal Bioanal Chem 389:441–446CrossRefGoogle Scholar
  30. 30.
    Lieberzeit PA, Afzal A, Rehman A, Dickert FL (2007) Sens Actuators B 127:132–136CrossRefGoogle Scholar
  31. 31.
    Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418CrossRefGoogle Scholar
  32. 32.
    Estevez MC, Galve R, Sanchez-Baeza F, Pilar FM (2008) Chem Eur J 14:1906–1917CrossRefGoogle Scholar
  33. 33.
    Wang H, Meng S, Guo K, Liu Y, Yang P, Zhong W, Liu B (2008) Electrochem Commun 10:447–450CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Analytical Chemistry and Food ChemistryUniversity of ViennaViennaAustria

Personalised recommendations