Analytical and Bioanalytical Chemistry

, Volume 393, Issue 1, pp 81–95

Ecotoxicity and analysis of nanomaterials in the aquatic environment

  • Marinella Farré
  • Krisztina Gajda-Schrantz
  • Lina Kantiani
  • Damià Barceló


Nanotechnology is a major innovative scientific and economic growth area. However nanomaterial residues may have a detrimental effect on human health and the environment. To date there is a lack of quantitative ecotoxicity data, and recently there has been great scientific concern about the possible adverse effects that may be associated with manufactured nanomaterials. Nanomaterials are in the 1- to 100-nm size range and can be composed of many different base materials (carbon, silicon and metals, such as gold, cadmium and selenium) and they have different shapes. Particles in the nanometer size range do occur both in nature and as a result of existing industrial processes. Nevertheless, new engineered nanomaterials and nanostructures are different because they are being fabricated from the “bottom up”. Nanomaterial properties differ compared with those of the parent compounds because about 40–50% of the atoms in nanoparticles (NPs) are on the surface, resulting in greater reactivity than bulk materials. Therefore, it is expected that NPs will have different biological effects than parent compounds. In addition, release of manufactured NPs into the aquatic environment is largely an unknown. The surface properties and the very small size of NPs and nanotubes provide surfaces that may bind and transport toxic chemical pollutants, as well as possibly being toxic in their own right by generating reactive radicals. This review addresses hazards associated and ecotoxicological data on nanomaterials in the aquatic environment. Main weaknesses in ecotoxicological approaches, controversies and future needs are discussed. A brief discussion on the scarce number of analytical methods available to determinate nanomaterials in environmental samples is included.


Nanomaterials Nanoparticles Nanotubes Fullerenes Quantum dot Toxicity 


  1. 1.
    McWilliams A (2006) BCC report highlights. Nanotechnology: a realistic market assessment. Accessed 2 Oct 2008
  2. 2.
    Owen R, Handy R (2007) Environ Sci Technol 41:5582–5588CrossRefGoogle Scholar
  3. 3.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Environ Health Perspect 113:823–839Google Scholar
  4. 4.
    Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Part Fibre Toxicol 2Google Scholar
  5. 5.
    Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberdörster G (2007) Adv Mat 19:3124–3129CrossRefGoogle Scholar
  6. 6.
    Colvin VL (2003) Nat Biotechnol 21:1166–1170CrossRefGoogle Scholar
  7. 7.
    Nel A (2005) Science 308:804–806CrossRefGoogle Scholar
  8. 8.
    Zhao Q, Pang XF, Liu LW, Deng B (2007) The biological effect of iron oxide and its hydrate nanoparticles. Solid State Phenom 121–123(2):735–738Google Scholar
  9. 9.
    Donaldson K, Tran CL (2002) Inhal Toxicol 14:5–27CrossRefGoogle Scholar
  10. 10.
    Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL (2005) Toxicol Sci 88:514–524CrossRefGoogle Scholar
  11. 11.
    Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Toxicol Sci 91:227–236CrossRefGoogle Scholar
  12. 12.
    Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Toxicol Sci 77:347–357; Tomellini R, De VillepinR C (eds) (2005) European Commission, conclusions and recommendations for new research. In: Proceedings of the workshop research needs on nanoparticles, Brussels, pp 75–79Google Scholar
  13. 13.
    Nel A, Xia T, Madler L, Li N (2006) Science 311:622–627CrossRefGoogle Scholar
  14. 14.
    Stern ST, McNeil SE (2008) Toxicol Sci 101:4–21CrossRefGoogle Scholar
  15. 15.
    Rogueda PGA, Traini D (2007) Expert Opin Drug Deliv 4:595–606CrossRefGoogle Scholar
  16. 16.
    Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Nanotoxicology 1:243–250CrossRefGoogle Scholar
  17. 17.
    Moore MN (2006) Environ Int 32:967–976CrossRefGoogle Scholar
  18. 18.
    Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O (2007) Sci Technol Adv Mat 8:47–59CrossRefGoogle Scholar
  19. 19.
    Lam CW, James JT, McCluskey R, Hunter RL (2004) Toxicol Sci 77:126–134CrossRefGoogle Scholar
  20. 20.
    Hoet PHM, Bruske-Hohlfeld I, Salata O (2004) J Nanobiotechnol 2:1–15CrossRefGoogle Scholar
  21. 21.
    Zhu S, Oberdörster E, Haasch ML (2006) Mar Environ Res 62Google Scholar
  22. 22.
    Wiesner MR, Lowry GV, Alvarez PJJ, Dionysiou D, Biswas P (2006) Environ Sci Technol 40:4336–4345CrossRefGoogle Scholar
  23. 23.
    Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Environ Sci Technol 41:2636–2642CrossRefGoogle Scholar
  24. 24.
    Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Ecotoxicology 17:396–409CrossRefGoogle Scholar
  25. 25.
    Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicology 17:387–395CrossRefGoogle Scholar
  26. 26.
    Nowack B, Bucheli TD (2007) Environ Poll 150:5–22CrossRefGoogle Scholar
  27. 27.
    Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Ecotoxicology 17:372–386CrossRefGoogle Scholar
  28. 28.
    Chijiwa T, Arai T, Sugai T, Shinohara H, Kumazawa M, Takano M, Kawakami SI (1999) Geophys Res Lett 26:767–770CrossRefGoogle Scholar
  29. 29.
    Heymann D, Wolbach W (2006) In: Rietmeijer FJM (ed) Natural fullerenes and related structures of elemental carbon. Springer, Dorrecht, pp 191–212Google Scholar
  30. 30.
    Esquivel EV, Murr LE (2004) Mat Character 52:15–25CrossRefGoogle Scholar
  31. 31.
    Murr LE, Esquivel EV, Bang JJ, De La Rosa G, Gardea-Torresdey JL (2004) Water Res 38:4282–4296CrossRefGoogle Scholar
  32. 32.
    Anastasio C, Martin ST (2001) Nanopart Environ 293–349Google Scholar
  33. 33.
    Kittelson DB (1998) J Aerosol Sci 29:575–588CrossRefGoogle Scholar
  34. 34.
    Casey WH, Phillips BL, Furrer G (2001) Nanopart Environ 167–190Google Scholar
  35. 35.
    Furrer G, Phillips BL, Ulrich KU, Thig R, Casey WH (2002) Science 297:2245–2247CrossRefGoogle Scholar
  36. 36.
    Matsunaga T, Sakaguchi T (2000) J Biosci Bioeng 90:1–13Google Scholar
  37. 37.
    Gilbert B, Banfield JF (2005) Rev Mineral Geochem 59:109–155CrossRefGoogle Scholar
  38. 38.
    Mackay CE, Johns M, Salatas JH, Bessinger B, Perri M (2006) Integ Environ Assess Manag 2:293–298CrossRefGoogle Scholar
  39. 39.
    Seekkuarachchi IN, Kumazawa H (2006) Ind Eng Comm 193:1333–1367Google Scholar
  40. 40.
    Seekkuarachchi IN, Kumazawa H (2008) Chem Eng Chem Res 47:2391–2400CrossRefGoogle Scholar
  41. 41.
    Fukushi K, Sato T (2005) Environ Sci Technol 39:1250–1256CrossRefGoogle Scholar
  42. 42.
    Kallay N, Salac S (2002) J Coll Interf Sci 253:70–76CrossRefGoogle Scholar
  43. 43.
    Zhu Y, Zhao Q, Li Y, Cai X, Li W (2006) J Nanosci Nanotechnol 6:1357–1364CrossRefGoogle Scholar
  44. 44.
    Xie B, Xu Z, Guo W, Li Q (2008) Environ Sci Technol 42:2853–2859CrossRefGoogle Scholar
  45. 45.
    Diegoli S, Manciulea AL, Begum S, Jones IP, Lead JR, Preece JA (2008) Sci Tot Environ 402:51–61CrossRefGoogle Scholar
  46. 46.
    Lecoanet HF, Bottero JY, Wiesner MR (2004) Environ Sci Technol 38:5164–5169CrossRefGoogle Scholar
  47. 47.
    Lecoanet HF, Wiesner MR (2004) Environ Sci Technol 38:4377–4382CrossRefGoogle Scholar
  48. 48.
    Guzman KAD, Finnegan MP, Banfield JF (2006) Environ Sci Technol 40:7688–7693CrossRefGoogle Scholar
  49. 49.
    Yang K, Zhu L, Xing B (2006) Environ Sci Technol 40:1855–1861CrossRefGoogle Scholar
  50. 50.
    Chen C, Wang X (2006) Ind Eng Chem Res 45:9144–9149CrossRefGoogle Scholar
  51. 51.
    Lu C, Liu C (2006) J Chem Technol Biotechnol 81:1932–1940CrossRefGoogle Scholar
  52. 52.
    Ding Q, Liang P, Song F, Xiang A (2006) Sep Sci Technol 41:2723–2732CrossRefGoogle Scholar
  53. 53.
    Cheng X, Kan AT, Tomson MB (2004) J Chem Eng Data 49:675–683CrossRefGoogle Scholar
  54. 54.
    Pal S, Tak YK, Song JM (2007) Appli Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  55. 55.
    Madden AS, Hochella J (2005) Geochim Cosmochim Acta 69:389–398CrossRefGoogle Scholar
  56. 56.
    Chau CF, Wu SH, Yen GC (2007) Trends Food Sci Technol 18:269–280CrossRefGoogle Scholar
  57. 57.
    Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M (2008) Food Addit Contam 25:795–821CrossRefGoogle Scholar
  58. 58.
    Maynard AD (2000) Philos Trans R Soc Lond A 358:2593–2609CrossRefGoogle Scholar
  59. 59.
    Mavrocordatos D, Pronk W, Boller M (2004) Water Sci Technol 50:9–18Google Scholar
  60. 60.
    Liu J (2005) J Electron Microsc 54:251–278CrossRefGoogle Scholar
  61. 61.
    Doucet FJ, Lead JR, Maguire L, Achterberg EP, Millward GE (2005) J Environ Monitor 7:115–121CrossRefGoogle Scholar
  62. 62.
    Redwood PS, Lead JR, Harrison RM, Jones IP, Stoll S (2005) Environ Sci Technol 39:1962–1966CrossRefGoogle Scholar
  63. 63.
    Song Y, Heien ML, Jimenez V, Wightman RM, Murray RW (2004) Anal Chem 76:4911–4919CrossRefGoogle Scholar
  64. 64.
    Helfrich A, Chert W, Bettmer J (2006) J Anal At Spectrom 21:431–434CrossRefGoogle Scholar
  65. 65.
    Krueger KM, Al-Somali AM, Falkner JC, Colvin VL (2005) Anal Chem 77:3511–3515CrossRefGoogle Scholar
  66. 66.
    Ziegler KJ, Schmidt DJ, Rauwald U, Shah KN, Flor EL, Hauge RH, Smalley RE (2005) Nano Lett 5:2355–2359CrossRefGoogle Scholar
  67. 67.
    d’Orlye F, Varenne A, Gareil P (2008) J Chromatogr A 1204:226–232CrossRefGoogle Scholar
  68. 68.
    Lin KH, Chu TC, Liu FK (2007) J Chromatogr A 1161:314–321CrossRefGoogle Scholar
  69. 69.
    Williams A, Varela E, Meehan E, Tribe K (2002) Int J Pharm 242:295–299CrossRefGoogle Scholar
  70. 70.
    Chmela E, Tijssen R, Blom MT, Gardeniers HJGE, Van den Berg A (2002) Anal Chem 74:3470–3475CrossRefGoogle Scholar
  71. 71.
    Baalousha M, Lead JR (2007) Environ Sci Technol 41:1111–1117CrossRefGoogle Scholar
  72. 72.
    Ledin A, Karlsson S, Ker A, Allard B (1994) Water Res 28:1539–1545CrossRefGoogle Scholar
  73. 73.
    Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Environ Sci Technol 39:1221–1230CrossRefGoogle Scholar
  74. 74.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163CrossRefGoogle Scholar
  75. 75.
    Iijima S (1991) Nature 354:56–58CrossRefGoogle Scholar
  76. 76.
    Andrievsky GV, Klochkov VK, Karyakina EL, Hedlov-Petrossyan NO (1999) Chem Phys Lett 300:392–396CrossRefGoogle Scholar
  77. 77.
    Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Pu CK, Rao AM, Klaine SJ (2007) Environ Sci Technol 41:3028–3029Google Scholar
  78. 78.
    Oberdörster G, Finkelstein JN (2006) Toxicol Sci 94:439CrossRefGoogle Scholar
  79. 79.
    Oberdörster E, Zhu S, Blickley TM, Clellan-Green P, Haasch ML (2006) Carbon 44:1112–1120CrossRefGoogle Scholar
  80. 80.
    Cheng J, Flahaut E, Shuk HC (2007) Environ Toxicol Chem 26:708–716CrossRefGoogle Scholar
  81. 81.
    Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006) Environ Sci Technol 40:7387–7393CrossRefGoogle Scholar
  82. 82.
    Ham HT, Choi YS, Chung IJ (2005) J Coll Interf Sci 286:216–223CrossRefGoogle Scholar
  83. 83.
    Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) Environ Sci Technol 39:4307–4316CrossRefGoogle Scholar
  84. 84.
    Smith CJ, Shaw BJ, Handy RD (2007) Aquat Toxicol 82:94–109CrossRefGoogle Scholar
  85. 85.
    Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS (2007) Environ Health Perspect 115:1059–1065CrossRefGoogle Scholar
  86. 86.
    Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L (2008) Aquat Toxicol 87:127–137CrossRefGoogle Scholar
  87. 87.
    Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Toxicol Lett 165:88–100CrossRefGoogle Scholar
  88. 88.
    Lovern SB, Klaper R (2006) Environ Toxicol Chem 25:1132–1137CrossRefGoogle Scholar
  89. 89.
    Hund-Rinke K, Simon M (2006) Environ Sci Poll Res 13:225–232CrossRefGoogle Scholar
  90. 90.
    Adams LK, Lyon DY, Alvarez PJJ (2006) Water Res 40:3527–3532CrossRefGoogle Scholar
  91. 91.
    Federici G, Shaw BJ, Handy RD (2007) Aquat Toxicol 84:415–430CrossRefGoogle Scholar
  92. 92.
    Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) Ecotoxicology 17:287–314CrossRefGoogle Scholar
  93. 93.
    Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Environ Sci Technol 41:8178–8186CrossRefGoogle Scholar
  94. 94.
    Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Chemosphere 71:1308–1316CrossRefGoogle Scholar
  95. 95.
    Mortimer M, Kasemets M, Heinlaan M, Kurvet I, Kahru A (2008) Toxicol In Vitro 22:1412–1417CrossRefGoogle Scholar
  96. 96.
    Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) J Nanobiotechnol 3:1–10CrossRefGoogle Scholar
  97. 97.
    Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che CM, Chiu J-F, Tam PKH (2007) Chem Med Chem 2:129–136Google Scholar
  98. 98.
    Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Sci Tot Environ 390:396–409CrossRefGoogle Scholar
  99. 99.
    Sondi I, Salopek-Sondi B (2004) J Coll Interf Sci 275:177–182CrossRefGoogle Scholar
  100. 100.
    Morones JR, Elechiguerra JL, Camacho-Bragado A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  101. 101.
    Türk V, Kaiser C, Schaller S (2008) J Clean Prod 16:1006–1009CrossRefGoogle Scholar
  102. 102.
    Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S (2008) Nanotechnology 19Google Scholar
  103. 103.
    Yeo MK, Kang M (2008) Bull Korean Chem Soc 29:1179–1184CrossRefGoogle Scholar
  104. 104.
    Lovern SB, Owen HA, Klaper R (2008) Nanotoxicology 2:43–48CrossRefGoogle Scholar
  105. 105.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Small 3:1941–1949CrossRefGoogle Scholar
  106. 106.
    Gagne F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauve S, Blaise C (2008) Aquat Toxicol 86:333–340CrossRefGoogle Scholar
  107. 107.
    Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) J Mol Med 83:377–385CrossRefGoogle Scholar
  108. 108.
    Hoshino A, Hanaki KI, Suzuki K, Yamamoto K (2004) Biochem Biophys Res Comm 314:46–53CrossRefGoogle Scholar
  109. 109.
    Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Bioconjug Chem 15:79–86CrossRefGoogle Scholar
  110. 110.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–1762CrossRefGoogle Scholar
  111. 111.
    Shiohara A, Hoshino A, Hanaki KI, Suzuki K, Yamamoto K (2004) Microbiol Immunol 48:669–675Google Scholar
  112. 112.
    Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Nat Med 10:993–998CrossRefGoogle Scholar
  113. 113.
    Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1436CrossRefGoogle Scholar
  114. 114.
    Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18CrossRefGoogle Scholar
  115. 115.
    Zhang Y, Chen W, Zhang J, Liu J, Chen G, Pope C (2007) J Nanosci Nanotechnol 7:497–503CrossRefGoogle Scholar
  116. 116.
    Hassellov M, Readman JW, Ranville JF, Tiede K (2008) Ecotoxicology 17:344–361CrossRefGoogle Scholar
  117. 117.
    Becker L, Bada JL, Winans RE, Hunt JE, Bunch TE, French BM (1994) Science 265:642–645CrossRefGoogle Scholar
  118. 118.
    Gimbert LJ, Haygarth PM, Beckett R, Worsfold PJ (2006) Environ Chem 3:184–191CrossRefGoogle Scholar
  119. 119.
    Deye JR, Shiveley AN, Oehrle SA, Walters KA (2008) J Chrom A 1181:159–161CrossRefGoogle Scholar
  120. 120.
    Kozlovski V, Brusov V, Sulimenkov I, Pikhtelev A, Dodonov A (2004) Rapid Comm Mass Spectrom 18:780–786CrossRefGoogle Scholar
  121. 121.
    Ilchenko S, Cotter RJ (2007) Int J Mass Spectrom 265:372–381CrossRefGoogle Scholar
  122. 122.
    Xia XR, Monteiro-Riviere NA, Riviere JE (2006) J Chromatogr A 1129:216–222CrossRefGoogle Scholar
  123. 123.
    Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Anal Chem 79:9091–9097CrossRefGoogle Scholar
  124. 124.
    Jiang L, Gao L, Sun J (2003) J Coll Interf Sci 260:89–94CrossRefGoogle Scholar
  125. 125.
    Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Environ Sci Technol 41:179–184CrossRefGoogle Scholar
  126. 126.
    Kirschner AN, Erlanger BF, Wilson SR (2008) Nanotechnology (in press)Google Scholar
  127. 127.
    Chang TH, Liu FK, Chang YC, Chu TC (2008) Chromatographia 67:723–730CrossRefGoogle Scholar
  128. 128.
    Huang HL, Wang HP, Wei GT, Sun IW, Huang JF, Yang YW (2006) Environ Sci Technol 40:4761–4764CrossRefGoogle Scholar
  129. 129.
    Kuçur E, Boldt FM, Cavaliere-Jaricot S, Ziegler J, Nann T (2007) Anal Chem 79:8987–8993CrossRefGoogle Scholar
  130. 130.
    Zhou Q, Xiao J, Wang W, Liu G, Shi Q, Wang J (2006) Talanta 68:1309–1315CrossRefGoogle Scholar
  131. 131.
    Cai Y, Jiang G, Liu J, Zhou Q (2003) Anal Chem 75:2517–2521CrossRefGoogle Scholar
  132. 132.
    Cai YQ, Cai YE, Mou SF, Lu YQ (2005) J Chromatogr A 1081:245–247CrossRefGoogle Scholar
  133. 133.
    Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Chem Phys Lett 376:154–158CrossRefGoogle Scholar
  134. 134.
    Zhou Q, Xiao J, Wang W (2006) J Chromatogr A 1125:152–158CrossRefGoogle Scholar
  135. 135.
    Biesaga M, Pyrzynska K (2006) J Sep Sci 29:2241–2244CrossRefGoogle Scholar
  136. 136.
    Long RQ, Yang RT (2001) J Am Chem Soc 123:2058–2059CrossRefGoogle Scholar
  137. 137.
    Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin YB, Terui N, Nodasaka Y, Sasa K, Shimizu K, Akasaka T, Shindoh M, Shibata KI, Yokoyama A, Mori M, Tanaka K, Sato Y, Tohji K, Tanaka S, Nishi N, Watari F (2004) Environ Sci Technol 38:6890–6896CrossRefGoogle Scholar
  138. 138.
    Zhou Q, Wang W, Xiao J (2006) Anal Chim Acta 559:200–206CrossRefGoogle Scholar
  139. 139.
    Gotovac S, Hattori Y, Noguchi D, Miyamoto JI, Kanamaru M, Utsumi S, Kanoh H, Kaneko K (2006) J Phys Chem B 110:16219–16224CrossRefGoogle Scholar
  140. 140.
    Cai YQ, Jiang GB, Liu JF, Zhou QX (2003) Anal Chim Acta 494:149–156CrossRefGoogle Scholar
  141. 141.
    Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Aquat Toxicol 86:379–387CrossRefGoogle Scholar
  142. 142.
    Lovern SB, Strickler JR, Klaper R (2007) Environ Sci Technol 41:4465–4470CrossRefGoogle Scholar
  143. 143.
    Oberdörster E (2004) Environ Health Perspect 112:1058–1062Google Scholar
  144. 144.
    Usenko CY, Harper SL, Tanguay RL (2007) Carbon 45:1891–1898CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Marinella Farré
    • 1
  • Krisztina Gajda-Schrantz
    • 2
  • Lina Kantiani
    • 1
  • Damià Barceló
    • 1
    • 3
  1. 1.Institute of Environmental Assessment and Water Research (IDAEA-CSIC)BarcelonaSpain
  2. 2.Department of Inorganic and Analytical ChemistryUniversity of SzegedDóm tér 7SzegedHungary
  3. 3.Institut Català de Recerca de l’Aigua (ICRA)Parc Científic i Tecnològic de la Universitat de GironaGironaSpain

Personalised recommendations