Advertisement

Analytical and Bioanalytical Chemistry

, Volume 392, Issue 7–8, pp 1431–1438 | Cite as

Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination

  • Linyuan Guo
  • Min Guan
  • Chuande Zhao
  • Haixia ZhangEmail author
Original Paper

Abstract

The synthesis and evaluation of a molecularly imprinted polymer (MIP) as a selective matrix solid-phase dispersion (MSPD) sorbent, coupled with high-performance liquid chromatography for the efficient determination of chloramphenicol (CAP) in fish tissues are studied. The polymer was prepared using CAP as the template molecule, vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer, and sodium dodecyl sulfate as the surfactant in the presence of water as a solvent by miniemulsion polymerization. The CAP-imprinted polymers and nonimprinted polymers (NIPs) were characterized by Fourier transform IR spectroscopy, scanning electron microscopy, and static adsorption experiments. The CAP-imprinted material prepared showed high adsorption capacity, significant selectivity, and good site accessibility. The maximum static adsorption capacity of the CAP-imprinted and the NIP material for CAP was 78.4 and 59.9 mg g-1, respectively. The relative selectivity factors of this CAP-imprinted material were larger than 1.9. Several parameters influencing the MSPD process were optimized. Finally, the CAP-imprinted polymers were used as the sorbent in MSPD to determine CAP in three kinds of fishes and resulted in satisfactory recovery in the range 89.8–101.43%. CAP-imprinted polymer as a sorbent in MSPD is better than C18 and attapulgite in terms of both recovery and percent relative standard deviation. The baseline noise was measured from a chromatogram of a blank fish sample which was treated after the MSPD procedure using CAP-imprinted polymer as a sorbent. Signal values of 3 times the noise (signal-to-noise ratio of 3) and 10 times the noise (signal-to-noise ratio of 10) were used to calculate the limit of detection and the limit of quantitation of the calibration curve. The limit of detection for CAP was 1.2 ng g-1 and the limit of quantitation was 3.9 ng g-1.

Keywords

Molecularly imprinted polymers Matrix solid-phase dispersion Chloramphenicol High-performance liquid chromatography 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China Fund (no. 20775029), the Huo Ying Dong Science Fund of China (no. 104038), the Program for New Century Excellent Talents in University (NCET-07–0400), and the Central Teacher Plan of Lanzhou University.

References

  1. 1.
    Wulff G, Sarhan A (1972) Angew Chem Int Ed Engl 11:341–346Google Scholar
  2. 2.
    Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Nature 361:645–647CrossRefGoogle Scholar
  3. 3.
    Watabe Y, Hosoya K, Tanaka N, Kubo T, Kondo T, Morita M (2005) J Chromatogr A 1073:363–370CrossRefGoogle Scholar
  4. 4.
    Lakshmi D, Prasad BB, Sharma PS (2006) Talanta 70:272–280CrossRefGoogle Scholar
  5. 5.
    Nie F, Lu J, He Y, Du JX (2005) Talanta 66:728–733CrossRefGoogle Scholar
  6. 6.
    Yang GL, Liu HY, Wang MM, Liu SB, Chen Y (2006) React Funct Polym 66:579–583CrossRefGoogle Scholar
  7. 7.
    Jiang XM, Tian W, Zhao CD, Zhang HX, Liu MC (2007) Talanta 72:119–125CrossRefGoogle Scholar
  8. 8.
    Ugelstad J, El-Aasser MS, Vanderhoff JW (1973) Polym Lett Ed 11:503–508CrossRefGoogle Scholar
  9. 9.
    Dawkins JV (1989) In: Allen G, Bevington JC (eds) Comprehensive polymer science. Pergamon, Oxford, pp 231–251Google Scholar
  10. 10.
    Ye L, Weiss R, Mosbach K (2000) Macromolecules 33:8239–8245CrossRefGoogle Scholar
  11. 11.
    Perez N, Whitcombe MJJ (2000) J Appl Polym Sci 77:1851–1859CrossRefGoogle Scholar
  12. 12.
    Priego-Capote F, Ye L, Shakil S, Shamsi AS, Nilsson S (2008) Anal Chem 80:2881–2887CrossRefGoogle Scholar
  13. 13.
    Vaihinger D, Landfester K, Krauter I, Brunner H, Gunter EMT (2002) Macromol Chem Phys 203:1965–1973CrossRefGoogle Scholar
  14. 14.
    Garcia-Lopez M, Canosa P, Rodriguez I (2008) Anal Bioanal Chem 391:963–974CrossRefGoogle Scholar
  15. 15.
    Crescenzi C, Bayoudh S, Cormack PAG, Klein T, Ensing K (2001) Anal Chem 73:2171–2177CrossRefGoogle Scholar
  16. 16.
    Kubala-Drincic H, Bazulic D, Sapunar-Postruznik J, Grubelic M, Stuhne G (2003) J Agric Food Chem 51:871–875CrossRefGoogle Scholar
  17. 17.
    Xiao HB, Krucker M, Albert K, Liang XM (2004) J Chromatogr A 1032:117–124CrossRefGoogle Scholar
  18. 18.
    Zhao M, Van der Wielen F, De Voogt P (1999) J Chromatogr A 873:129–138CrossRefGoogle Scholar
  19. 19.
    Pensado L, Casais MC, Mejuto MC, Cela R (2005) J Chromatogr A 1077:103–109CrossRefGoogle Scholar
  20. 20.
    Tolls J, Haller M, Sijm DT (1999) Anal Chem 71:5242–5247CrossRefGoogle Scholar
  21. 21.
    Ahmed AF, Ahmad J, Amer AR, Saif AH (2007) Environ Geol 51:1317–1327CrossRefGoogle Scholar
  22. 22.
    Dai RL, Zhang GY, Gu XZ, Wang MK (2008) Environ Geochem Health. doi: 10.1007/s10653–007–9130–0
  23. 23.
    Keito B, Naomitsu S, Kazuo M (2001) J Am Oil Chem Soc 78(7):733–736CrossRefGoogle Scholar
  24. 24.
    Yan HY, Qiao FX, Row KH (2007) Anal Chem 79:8242–8248CrossRefGoogle Scholar
  25. 25.
    Vivekanandan K, Swanmy MG, Prasad S, Mukherjee R (2005) Rapid Commun Mass Spectrom 19:3025–3030CrossRefGoogle Scholar
  26. 26.
    Bogusz MJ, Hassan H, Al-Enzai E, Ibrahim Z, Al-Tufail M (2004) J Chromatogr B 807:343–356CrossRefGoogle Scholar
  27. 27.
    European Council (1994) Council Regulation (EEC) no. 2377/90 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin, amending regulation no. 1430/94 of 22 June 1994. Off J Eur Community L15623:6Google Scholar
  28. 28.
    Delahaut P, Levaux C, Eloy P, Dubois M (2003) Anal Chim Acta 483:335–340CrossRefGoogle Scholar
  29. 29.
    Singer CJ, Katz SE (1985) J Assoc Off Anal Chem 68:1037–1041Google Scholar
  30. 30.
    Ferguson J, Baxter A, Young P, Kennedy G, Elliott C, Weigel S, Gatermann R, Ashwin H, Stead S, Sharman M (2005) Anal Chim Acta 529:109–113CrossRefGoogle Scholar
  31. 31.
    Posyniak A, Zmudzki J, Niedzielska J (2003) Anal Chim Acta 483:307–311CrossRefGoogle Scholar
  32. 32.
    Mottier P, Parisod V, Gremaud E, Guy P, Stadler R (2003) J Chromatogr A 994:75–84CrossRefGoogle Scholar
  33. 33.
    Han DM, Fang GZ, Yan XP (2005) J Chromatogr A 1100:131–136CrossRefGoogle Scholar
  34. 34.
    Raphael L, Scott M, Sergey AP, Soo-Hwan C, Kazuyoshi Y, Isao K (1997) Anal Chem 69:2017–2021CrossRefGoogle Scholar
  35. 35.
    Mena ML, Agui L, Martinez-Ruiz P, Yanez-Sedeno P, Reviejo AJ, Pingarron JM (2003) Anal Bioanal Chem 376:18–25Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Linyuan Guo
    • 1
  • Min Guan
    • 1
  • Chuande Zhao
    • 1
  • Haixia Zhang
    • 1
    Email author
  1. 1.Department of ChemistryLanzhou UniversityLanzhouChina

Personalised recommendations